World Journal of Agricultural Research
ISSN (Print): 2333-0643 ISSN (Online): 2333-0678 Website: Editor-in-chief: Rener Luciano de Souza Ferraz
Open Access
Journal Browser
World Journal of Agricultural Research. 2023, 11(1), 8-15
DOI: 10.12691/wjar-11-1-2
Open AccessArticle

Fungal Pathogens Affecting the Quality of Rice (Oryza sativa L.) Seed in Selected Agro-ecological Zones of Liberia

Ousman Sarlia Dorley1, , Javan Omondi Were2, 3, Julius Onyango Ochuodho2, 3 and Elmada Odeny Auma2, 3

1Department of General Agricultural, University of Liberia, Capitol Hill, Liberia

2Department of Seed, Crop and Horticultural Sciences, School of Agriculture, University of Eldoret, Eldoret, Kenya

3School of Agriculture, University of Eldoret, Eldoret, Kenya

Pub. Date: March 03, 2023

Cite this paper:
Ousman Sarlia Dorley, Javan Omondi Were, Julius Onyango Ochuodho and Elmada Odeny Auma. Fungal Pathogens Affecting the Quality of Rice (Oryza sativa L.) Seed in Selected Agro-ecological Zones of Liberia. World Journal of Agricultural Research. 2023; 11(1):8-15. doi: 10.12691/wjar-11-1-2


The study aimed to investigate the presence and characterization of fungal pathogens in rice grains collected from four major rice producing counties in Liberia. Samples were collected from rice farmers in Bong, Lofa, Montserrado, and Nimba Counties during the dry season and taken to a laboratory in Kenya for isolation and characterization of fungal colonies. The results showed that Aspergillus spp and Penicillium spp were the most abundant fungal isolates found in the rice grains. The most abundant fungal isolate was Aspergillus niger, followed by A. flavus and Penicillium spp. The study showed that the extensive presence of these fungi in rice grains is favored by warm and humid subtropical climates similar to Liberia, which can encourage conditions for fungal contamination. Other fungi found were Fusarium spp and Pyricularia oryzae. The findings of this study highlight the importance of controlling fungal contamination in stored rice grains to ensure food safety and security.

rice fungal pathogens seed policy Liberia isolates

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Hilson, G., & Bockstael, S. V. (2012). Poverty and Livelihood Diversification in Rural Liberia: Exploring the Linkages between Artisanal Diamond Mining and Smallholder Rice Production. The Journal of Developmental Studies, 48(3).
[2]  Chauhan, B. S., Jabran, K., & Mahajan, G. (2017). Rice Production Worldwide. Switzerland: Springer International Publishing AG.
[3]  Dorley, S. O., Mutio, M. J., Ochudho, J. O., & Auma, O. E. Rice: Seed systems, Production Characteristics, and Fungal infections of stored grains in Major Production Zones of Liberia. Asian Journal of Agriculture and Rural Development, 12(4), 297-305.
[4]  Republic of Liberia. (2019). Food Fortification Initiative: Enhancing Grains for Healthier Lives. Liberia: Republic of Liberia.
[5]  Ashmun, J. (2020). Liberia. Retrieved from
[6]  FAOSTAT. (2020). Food and Agricultural Organization of the united Nation Statistics.
[7]  Neergaard, P. (1997). Seed Pathology. London: The Macmillan pree.
[8]  SDCA. (2016). The Liberia Seed Development and Certification Agency Act. Monrovia, Liberia: Government of Liberia.
[9]  Finch-Savage. (1995). Influence of seed quality on crop establishment, growth and yield. 361-384.
[10]  McGuire, S., & Sperling, L. (2016). Seed systems smallholder farmers use. 8(1), 179-195.
[11]  Probst, P., Bandyopadhyay, R., Price, L. E., and Cotty, P. J. (2011). Identification of Atoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Dis. 95, 212-218.
[12]  Yacouba Séré, Y., Fargette, D., Abo, M. E., Wydra, K., Bimerew, M., Onasanya, A., & Akator, S. K. (2013). Managing the Major Diseases of Rice in Africa. In M. C. S. Wopereis, D. E. Johnson, N. Ahmadi, E. Tollens, & A. Jalloh (Eds.), Realizing Africa’s Rice Promise. Nosworthy Way, Wallingford, Oxfordshire OX10 8DE U K: CAB International.
[13]  LSDCR. (2021). Liberia Seed Development and Certification Regulations Monrovia, Liberia.
[14]  Pathak, N., & Zaidi, R. K. (2013). Studies on seed-borne fungi of wheat in seed health testing programme. Archives of Phytopathology and Plant Protection, 46(4), 389-401.
[15]  Mannaa, M., Oh, J. Y., & Kim, K. D. (2017). Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and aflatoxin production on stored rice grains. Mycobiology, 45(3), 213-219.
[16]  Bertuzzi, T., Romani, M., Rastelli, S., & Giorni, P. (2019). Mycotoxins and related fungi in Italian paddy rice during the growing season and storage. Toxins, 11(3), 151.
[17]  Lv, C., Jin, J., Wang, P., Dai, X., Liu, Y., Zheng, M., & Xing, F. (2019). Interaction of water activity and temperature on the growth, gene expression and aflatoxin production by Aspergillus flavus on paddy and polished rice. Food Chemistry, 293, 472-478.
[18]  Shanakht, H., Shahid, A. A., & Ali, S. W. (2014). Characterization of fungal microbiota on rice grains from local markets of Lahore. Journal of Hygienic Engineering and Design, 9, 35-40.
[19]  Silva, J. J. da, Iamanaka, B. T., Ferranti, L. S., Massi, F. P., Taniwaki, M. H., Puel, O., Lorber, S., Frisvad, J. C., & Fungaro, M. H. P. (2020). Diversity within Aspergillus niger Clade and Description of a New Species: Aspergillus vinaceus sp. Nov. Journal of Fungi, 6(4), 371.
[20]  Tournas, V. H., & Niazi, N. S. (2018). Potentially toxigenic fungi from selected grains and grain products. Journal of Food Safety, 38(1), e12422.
[21]  Mannaa, M., & Kim, K. D. (2016). Microbe-mediated control of mycotoxigenic grain fungi in stored rice with focus on aflatoxin biodegradation and biosynthesis inhibition. Mycobiology, 44(2), 67-78.
[22]  Yin, G., Zhang, Y., Pennerman, K. K., Wu, G., Hua, S. S. T., Yu, J., Jurick, W. M., Guo, A., & Bennett, J. W. (2017). Characterization of blue mold Penicillium species isolated from stored fruits using multiple highly conserved loci. Journal of Fungi, 3(1), 12.
[23]  Samson, R., Hoekstra, E., Lund, F., Filtenborg, O., & Frisvad, J. C. (2004). Methods for the detection, isolation and characterisation of food-borne fungi. Introduction to Food-and Airborne Fungi, Ed. 7, 283-297.
[24]  La Guerche, S., Garcia, C., Darriet, P., Dubourdieu, D., & Labarère, J. (2004). Characterization of Penicillium species isolated from grape berries by their internal transcribed spacer (ITS1) sequences and by gas chromatography-mass spectrometry analysis of geosmin production. Current Microbiology, 48(6), 405.
[25]  Nzabarinda, V., Bao, A., Xu, W., Uwamahoro, S., Udahogora, M., Umwali, E. D., Nyirarwasa, A., & Umuhoza, J. (2021). A spatial and temporal assessment of vegetation greening and precipitation changes for monitoring vegetation dynamics in climate zones over Africa. ISPRS International Journal of Geo-Information, 10(3), 129.
[26]  Katsurayama, A. M., Martins, L. M., Iamanaka, B. T., Fungaro, M. H. P., Silva, J. J., Pitt, J. I., Frisvad, J. C., & Taniwaki, M. H. (2020). Fungal communities in rice cultivated in different Brazilian agroclimatic zones: From field to market. Food Microbiology, 87, 103378.
[27]  Phan, L. T. K., Tran, T. M., Audenaert, K., Jacxsens, L., & Eeckhout, M. (2021). Contamination of Fusarium proliferatum and Aspergillus flavus in the Rice Chain Linked to Crop Seasons, Cultivation Regions, and Traditional Agricultural Practices in Mekong Delta, Vietnam. Foods, 10(9), 2064.
[28]  Dong, F., Zhang, X., Xu, J. H., Shi, J. R., Lee, Y.-W., Chen, X. Y., Li, Y. P., Mokoena, M. P., & Olaniran, A. O. (2020). Analysis of Fusarium graminearum species complex from freshly harvested rice in Jiangsu province (China). Plant Disease, 104(8), 2138-2143.
[29]  Phan, L. T. K., Tran, T. M., Audenaert, K., Jacxsens, L., & Eeckhout, M. (2021). Contamination of Fusarium proliferatum and Aspergillus flavus in the Rice Chain Linked to Crop Seasons, Cultivation Regions, and Traditional Agricultural Practices in Mekong Delta, Vietnam. Foods, 10(9), 2064.
[30]  Aruna, J., Kumar, S. V., Rambabu, R., Ramesh, S., Yashaswini, C., Bhaskar, B., Madhavi, K., Balachndran, S., Ravindrababu, V., & Prasad, M. (2016). Morphological characterization of five different isolates of Pyricularia oryzae causing rice blast disease. An International Journal Society for Scientific Development in Agriculture and Technology, 3377-3380.
[31]  Kim, Y., Roh, J.-H., & Kim, H. Y. (2018). Early forecasting of rice blast disease using long short-term memory recurrent neural networks. Sustainability, 10(1), 34.
[32]  Rajashekara, H., Prakash, G., Pandian, R., Sarkel, S., Dubey, A., Sharma, P., Chowdary, V., Mishra, D., Sharma, T., & Singh, U. (2017). An efficient technique for isolation and mass multiplication of Magnaporthe oryzae from blast infected samples. Indian Phytopathol, 69, 260-265.
[33]  Kawasaki-Tanaka, A., Hayashi, N., Yanagihara, S., & Fukuta, Y. (2016). Diversity and distribution of rice blast (Pyricularia oryzae Cavara) races in Japan. Plant Disease, 100(4), 816-823.
[34]  Barnwal, M., Singh, V. K., Sharma, R., & Singh, B. (2012). Field evaluation of rice genotypes for resistance and new fungicides for control of blast (Pyricularia oryzae). Ind. Phytopathol, 65(1), 56-59.
[35]  Lee, Y.-H., Ra, D.-S., Yeh, W.-H., Choi, H.-W., Myung, I.-S., Lee, S.-W., Lee, Y.-H., Han, S.-S., & Shim, H.-S. (2010). Survey of major disease incidence of rice in Korea during 1999-2008. Research in Plant Disease, 16(2), 183-190.
[36]  Agbowuro, G., Afolabi, M., Olamiriki, E., & Awoyemi, S. (2020). Rice blast disease (Magnaporthe oryzae): A menace to rice production and humanity.