World Journal of Analytical Chemistry
ISSN (Print): 2333-1178 ISSN (Online): 2333-1283 Website: https://www.sciepub.com/journal/wjac Editor-in-chief: Raluca-Ioana Stefan-van Staden
Open Access
Journal Browser
Go
World Journal of Analytical Chemistry. 2024, 9(1), 1-9
DOI: 10.12691/wjac-9-1-1
Open AccessArticle

Application of Molecular Spectroscopies for the Compositional Analysis of Short Chain Cinnamyl Ester Mixtures

Ronald P. D’Amelia1, and Evan H. Kreth1

1Chemistry Department, Hofstra University, Hempstead, NY

Pub. Date: July 15, 2024

Cite this paper:
Ronald P. D’Amelia and Evan H. Kreth. Application of Molecular Spectroscopies for the Compositional Analysis of Short Chain Cinnamyl Ester Mixtures. World Journal of Analytical Chemistry. 2024; 9(1):1-9. doi: 10.12691/wjac-9-1-1

Abstract

Short chain cinnamyl esters hold a multitude of applications within the food, cosmetic and pharmaceutical industries as flavor and fragrance compounds. However, due to high structural similarity, these compounds are difficult to differentiate from one another. Quantitative proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared (FTIR) spectroscopies were utilized to not only distinguish between these compounds, but also to quantify their relative concentrations when present simultaneously. 1H NMR and FTIR spectra were first obtained for each cinnamyl acetate (CA), propionate (CP), and butyrate (CB) individually, followed by those for binary mixtures of weight percent ranging from zero to one hundred percent. Resolved 1H NMR methyl proton resonances 1.95 (s, 3H), 1.07 (t, 3H), and 0.88 (t, 3H) and unique peaks in the fingerprint region of the FTIR spectra were used to determine relative concentrations of CA, CP, and CB respectively in each of the binary mixtures. Strong, linear correlations were established between gravimetrically achieved weight percent and those ascertained by 1H NMR (r2 > 0.99) and FTIR (r2 > 0.98) spectra. These results confirm the use of fundamental spectroscopic techniques 1H NMR and FTIR in the identification, but more appreciably quantification, of organic compounds.

Keywords:
Proton nuclear magnetic resonance spectroscopy (1H NMR) Fourier-transform infrared spectroscopy (FTIR) short-chain cinnamyl esters cinnamyl acetate (CA) cinnamyl propionate (CP) cinnamyl butyrate (CB)

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  FDA (Food and Drug Administration). Code of Federal Regulations, 21 CFR 172.515. Title 21 – Food and Drugs, Volume 3, Chapter I – Food and Drug Administration, Department of Health and Human Services. Part 172 – Food Additives Permitted for Direct Addition to Food for Human Consumption. Subpart F – Flavoring Agents and Related Substances, 515 – Synthetic Flavoring Substances and Adjuvants.
 
[2]  Belsito D, Bickers D, Bruze M, Calow P, Greim H, Hanifin JM, Rogers AE, Saurat JH, Sipes IG, Tagami H (2007). "A toxicologic and dermatologic assessment of related esters and alcohols of cinnamic acid and cinnamyl alcohol when used as fragrance ingredients". Food and Chemical Toxicology. 45 (Suppl 1): S1–23.
 
[3]  Bhatia SP, Wellington GA, Cocchiara J, Lalko J, Letizia CS, Api AM (2007-01-01). "Fragrance material review on cinnamyl acetate". Food and Chemical Toxicology. 45 Suppl 1 (1): S53–7.
 
[4]  Devulapelli, Venu Gopal; Weng, Hung-Shan (2009-07-25). "Synthesis of cinnamyl acetate by solid–liquid phase transfer catalysis: Kinetic study with a batch reactor". Catalysis Communications. 10 (13): 1638–1642.
 
[5]  Cai X, Wang W, Lin L, He D, Shen Y, Wei W, Wei Dz (2017-04-01). "Cinnamyl Esters Synthesis by Lipase-Catalyzed Transesterification in a Non-Aqueous System". Catalysis Letters. 147 (4): 946–952.
 
[6]  Geng, B. (August 2012). "Cinnamyl acetate synthesis by lipase-catalyzed transesterification in a solvent-free system.” Biotechnology and Applied Biochemistry. 59 (4): 270–275.
 
[7]  Luebke, William (2018-01-31). . www.thegoodscentscompany.com. Retrieved 2018-03-23.
 
[8]  D’Amelia, R.P., Huang, L., Nirode, W.F., Rotman, E., Shumila, J., and Wachter, N., “Application of 1H-NMR for the Quantitative Analysis of Short Chain Fatty Acid Methyl Ester Mixtures: An Undergraduate Instrumental Analysis Experiment”, World Journal of Chemical Education, 3(2). 46-50. April 2015.
 
[9]  D’Amelia, R.P., Mancuso, J., and Wachter, N., “Application of Quantitative Proton Nuclear Magnetic Resonance Spectroscopy for the Compositional Analysis of Short Chain Fatty Acid Benzyl Ester Mixtures”, World Journal of Chemical Education, 7(3), 189-195. May 2019.
 
[10]  Woodworth J.K., Terrance J.C., and Hoffmann M.M., “Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams”, J. Chem. Educ., 83(7). 1065-1066. July 2006.
 
[11]  Isaac-Lam M.F., “Analysis of Bromination of Ethylbenzene using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment”, J. Chem. Educ., 91(8). 1264-1266. July 2014.
 
[12]  McGregor, M.A., Euler, W.B., Undergraduate NMR Laboratory Experiments. In NMR Concepts; Traficante, D.D. Ed.; NMR Concepts: Warwick, RI, 1995.
 
[13]  Gift A.D., Stewart S.M., and Bokashanga K.P., “Experimental Determination of pKa Values by use of NMR Chemical Shifts, Revisited”, J. Chem. Educ., 89(11). 1458-1460. August 2012.
 
[14]  Dauner, B. and Pringle, D., “Proton NMR Analysis of Heat Exchange Fluids Containing Ethylene Glycol, Propylene Glycol, and Water: A Real-World Experiment for the Analytical Laboratory”, J. Chem. Educ., 91(5). 743-746. April 2014.
 
[15]  Hoffmann M.M., Caccamis J.T., Heitz M.P., and Schlecht K.D., “Quantitative Analysis of Nail Polish Remover using Nuclear Magnetic Resonance Spectroscopy Revisited”, J. Chem. Educ., 85(10). 1421-1423. October 2008.
 
[16]  Clarke, D., “Acetone and Ethyl Acetate in Commercial Nail Polish Removers: A Quantitative NMR Experiment using an Internal Standard”, J. Chem. Educ., 74(12). 1464-1465. December 1997.
 
[17]  Peterson, J., “1H NMR Analysis of Mixtures using Internal Standards”, J. Chem. Educ., 69(10). 843-845. October 1992.
 
[18]  Phillips, J.S. and Leary, J.J., “A Qualitative – Quantitative 1H- NMR Experiment for the Instrumental Analysis Laboratory”, J. Chem. Educ., 63(6). 545-546. June 1986.
 
[19]  Podgorski, V.V., Milhalev, A. S., Kalabin, G.A., “Quantitative NMR Spectroscopy for the Quality control of Drugs and Pharmaceuticals”, Phar. Chem. J., 45(3). 194-197. June 2011.
 
[20]  D’Amelia, R.P., Kimura, M.W., and Nirode, W.F., “Application of Quantitative Proton Nuclear Magnetic Resonance Spectroscopy for the Compositional Analysis of Short-Chain Fatty Acid Ethyl Ester Mixtures”, World Journal of Chemical Education, 9(1), 8-13. November 2020.
 
[21]  D’Amelia, R.P., Khanyan, B., and Mancuso, J., “Compositional Analysis of Mixtures of Oleate Esters of Short Chain Alcohols (C1-C4) by Quantitative Proton Nuclear Magnetic Resonance Spectroscopy (qPNMR)”, World Journal of Chemical Education, 10(1), 1-7. December 2021.
 
[22]  D’Amelia, R. P.; Kimura, M. W.; Villion, M.-C. “Qualitative and Quantitative Analyses of Synthesized Short-Chain Fatty Acid Phenyl Esters Using Fourier-Transform Infrared Spectroscopy”. World J. Org. Chem. 2021, 9(1) 6-17.
 
[23]  Schuttlefield, J. D.; Grassian, V. H. ATR–FTIR Spectroscopy in the Undergraduate Chemistry Laboratory. Part I: Fundamentals and Examples. J. Chem. Educ. 2008, 85 (2), 279.
 
[24]  Robinson, J. W.; Frame, E. S.; Frame II, G. M. Chapter 4. In Undergraduate Instrumental Analysis; CRC Press: New York, 2014.
 
[25]  Gebel, M. E.; Kaleuati, M. A.; Finlayson-Pitts, B. J. Measurement of Organics Using Three FTIR Techniques: Absorption, Attenuated Total Reflectance, and Diffuse Reflectance. J. Chem. Educ. 2003, 80 (6), 672.
 
[26]  Lambert, J. B.; Gronet, S.; Shurvell, H. F.; Lightner, D. Organic Structural Spectroscopy, 2nd ed.; Prentice Hall: New Jersey, 2010.
 
[27]  Bellamy, M. K. Using FTIR-ATR Spectroscopy to Teach the Internal Standard Method. J. Chem. Educ. 2010, 87 (12), 1399-1401.
 
[28]  Tarhan, İ.; Ismail, A. A.; Kara, H. Quantitative Determination of Free Fatty Acids in Extra Virgin Olive Oils by Multivariate Methods and Fourier Transform Infrared Spectroscopy Considering Different Absorption Modes. Int. J. Food Prop. 2017, 20 (sup1), S790-S797.
 
[29]  Ismail, A. A.; van de Voort, F. R.; Emo, G.; Sedman, J. Rapid Quantitative Determination of Free Fatty Acids in Fats and Oils by Fourier Transform Infrared Spectroscopy. J. Am. Oil Chem. Soc. 1993, 70 (4), 335-341.
 
[30]  D’Amelia, R. P.; Gentile, S.; Nirode, W. F.; Huang, L. Quantitative Analysis of Copolymers and Blends of Polyvinyl Acetate (PVAc) Using Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA). World J. Chem. Educ. 2016, 4 (2), 25-31.
 
[31]  D’Amelia, R. P.; Huang, L.; Mancuso, J. Quantitative Analysis of Polyvinyl Alcohol-Polyethylene (PVOH-PE) Copolymers and Polyvinyl Pyrrolidone-Polyvinyl Acetate (PVP-PVAc) Copolymers and Blends Using Fourier Transform Infrared Spectroscopy and Elemental Analysis. World J. Chem. Educ. 2019, 7 (1), 1-11.