[1] | F. Brenti, Log-concave and unimodal sequence in algebra, combinatorics and geometry: an update. Elec. Contemp. Math. 178 (1994, 1997), 71-84. |
|
[2] | R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576 (1989), 500-534. |
|
[3] | Y. Wang, Y.-N. Yeh, Log-concavity and LC-positivity, J. Combin. Theory Ser. A, 114 (2007), 195-210. |
|
[4] | L. M. Butler, The q-log concavity of q-binomial coefficients, J. Combin. Theory Ser. A 54 (1990), 54-63. |
|
[5] | W. Y. C. Chen, L. X. W. Wang and A. L. B. Yang, Schur positivity and the q-log-convexity of the Narayana polynomials, J. Algebr. Comb. 32 (2010), 303-338. |
|
[6] | B.-X. Zhu, Log-convexity and strong q-log-convexity for some triangular arrays, Adv. in. Appl. Math. 50(4) (2013), 595-606. |
|
[7] | N-N. Cao, F-Z. Zhao, Some Properties of Hyperfibonacci and Hy-perlucas Numbers, Journal of Integer Sequences, 13(8) (2010), Article 10.8.8. |
|
[8] | A. Dil, I. Mezö, A symmetric algorithm for hyperharmonic and Fibonacci numbers,Appl. Math. Comput. 206 (2008), 942-951. |
|
[9] | N. J. A. Sloane, On-line Encyclopedia of Integer Sequences, http://oeis.org, (2014). |
|
[10] | L.-N. Zheng, R. Liu, On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers, J. Integer Sequences, Vol. 17 (2014), Article 14.1.4. |
|
[11] | M. Ahmia, H. Belbachir, A. Belkhir, The log-concavity and log-convexity properties associated to hyperpell numbers and hyperpell-lucas numbers, Annales Mathematicae et Informaticae. 43 (2014), 3-12. |
|
[12] | A. F. Horadam. Jacobsthal Representation Numbers. Fibonacci Quarterly, 34 (1) (1996), 40-54. |
|
[13] | A. F. Horadam. Jacobsthal and Pell Curves. The Fibonacci Quarterly 26.1 (1988), 79-83. |
|
[14] | K. V. Menon. On the convolution of logarithmically concave sequences, Proc. Amer. Math. Soc, 23 (1969), 439-441. |
|
[15] | D. W. Walkup, Pólya sequences, binomial convolution and the union of random sets, J. Appl. Probab, 13 (1976), 76-85. |
|
[16] | M. Ahmia, H. Belbachir, Preserving log-concavity and general-ized triangles. T. Komatsu (ed.), Diophantine analysis and related fields 2010. NY: American Institute of Physics (AIP). AIP Conference Proceedings 1264 (2010), 81-89. |
|
[17] | M. Ahmia, H. Belbachir, Preserving log-convexity for generalized Pascal triangles, Electron. J. Combin. 19(2) (2012), Paper 16, 6 pp. |
|
[18] | F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. no. 413 (1989). |
|
[19] | H. Davenport, G. Pólya, On the product of two power series, Canadian J. Math. 1 (1949), 1-5. |
|
[20] | L. Liu, Y. Wang, On the log-convexity of combinatorial sequences, Advances in Applied Mathematics 39(4) (2007), 453-476. |
|