[1] | Chaudhry M. A. and Zubair S. M., On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall, (CRC Press Company), Boca Raton, London, New York and Washington, D. C., 2001. |
|
[2] | Erdélyi,A., Magnus,W., Oberhettinger, F. and Tricomi, F.G., Higher Transcendental Functions, Vol.I , McGraw – Hill book inc. New York, Toronto and London, 1953. |
|
[3] | Jankov, D., Pogány T. K. and Saxena, R. K. An extended general Hurwitz-Lerch Zeta function as a Mathieu (a,λ)-series, Appl. Math. Lett., 24, 1473-1476,2011. |
|
[4] | Bin-Saad Maged G. , "Sums and partial sums of double power series associated with the generalized zeta function and their N-fractional calculus", Math. J. Okayama University, 49, 37-52, 2007. |
|
[5] | Bin-Saad Maged G.,"Hypergeometric Series Associated with the Hurwitz-Lerch Zeta Function", Acta Math. Univ. Comenianae, 2, 269-286, 2009. |
|
[6] | Bin-Saad Maged G. and Al Gonah, A.A., On hypergeometric type generating functions associated with generalized zeta function, Acta Math. Univ. Comenianae, 2, 253-266, 2006 |
|
[7] | Bin-Saad Maged G., Pathan M. A. and Hanballa Amani M.,On power series associated with generalized multiple zeta function, Math. Sci. Res. J. 17(10) 279-291, 2013. |
|
[8] | Choi J., Multiple gamma function and their applications, in Proc. Internat. Conf. on Analysis (editied by Y.C. Kim), Yeungnam Univeristy, Korea, 73-84,1996. |
|
[9] | Choi J., Jang D. S. and Srivastava H. M., A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 19, 65-79, 2008. |
|
[10] | Goyal, S. and Laddha, R.K. , On the Generalized Riemann Zeta Funcion and the Generalized Lambert Transform, Ganita Sandesh, 11, 99-108, 1997. |
|
[11] | Lin S. D. and Srivastava H. M., Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154, 725-733, 2004. |
|
[12] | Srivastava, H. M., M. J. Luo and. Raina, R. K, New results involving a class of generalized Hurwitz-Lerch Zeta functions and their applications, Turkish J. Anal. Number Theory 1(1), 26-35, 2013. |
|
[13] | Srivastava, H. M., R. K. Saxena, T. K. Pogány and R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 22(7) , 487-506, 2011. |
|
[14] | Srivastava, H. M., D. Jankov, Pogány, D., T. K. and R. K. Saxena, Two-sided inequalities for the extended Hurwitz-Lerch Zeta function, Comput. Math. Appl. 62 (2011), 516-522 |
|
[15] | Kamano K., The multiple Hurwitz Zeta function and a generalization of Lerch’s formula, Tokyo J. Math. 29, 61-73, 2006. |
|
[16] | Matsumoto, K., The analytic continuation and the asymptonic behaviour of certain multiple zeta-functions I, J. Number Theory 101, 223-243,2003. |
|
[17] | Srivastava, H. M. and Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Halsted Press, Brisbane, London, New York, 1985. |
|
[18] | Srivastava, H. M. and Manoch, H. L., A treatise on Generating Functions, Halsted Press, Brisbane, London, New York, 1984. |
|
[19] | Whittaker, E. T. and Watson, G. N., A course of modern Analysis, Fourth Edition, Cambridge Uni. Press, 1952. |
|
[20] | Srivastava H. M. and Choi J., Zeta and q-Zeta Functions and Associate Series and Integrals, Elsevier Science, Publishers, Amsterdam, London and New York, 2012. |
|
[21] | Andrews, L.C., Special Functions for Engineers and Applied Mathematician, Mac-Millan, New York, 1985. |
|
[22] | Miller, K.S. and Rose, B., An introduction to The Fractional Calculus and Fractional Differential Equations, New York, 1993. |
|
[23] | Lauricella, G., Sulle funzioni ipergeometriche a piu variabili. Rend. Circ. Mat. Palermo 7, 111-158, 1893. |
|