[1] | I.S. Gradshteyn and I.M. Rhyzik, Table of Integrals, Series, and Products, 7th ed., Academic Press, New York, 2007. |
|
[2] | J. Worpitzky, “Studien über die Bernoullischen und Eulerschen Zahlen,” J. Reine Angew. Math. 94, 203-232 (1883). |
|
[3] | S. Ramanujan, “Some Properties of Bernoulli's Numbers,” J. Indian Math. Soc. 3, 219-234 (1911). |
|
[4] | T. Agoh and K. Dilcher, “Shortened recurrence relations for Bernoulli numbers,” Discrete Math. 309, 887-898 (2009). |
|
[5] | K. Dilcher, L. Skula, I.Sh. Slavutskii, “Bernoulli numbers. Bibliography (1713-1990),” Queen's Papers in Pure and Applied Mathematics 87, Queen's University, Kingston, Ont., 1991. Updated on-line version: http://www.mathstat.dal.ca/~dilcher/bernoulli.html. |
|
[6] | H.-T. Kuo, “A recurrence formula for (2n),” Bull. Am. Math. Soc. 55, 573-574 (1949). |
|
[7] | L. Euler, “De summis serierum reciprocarum,” Commentarii Academiae Scientiarum Petropolitanae 7, 123-134 (1740). |
|
[8] | E.C. Titchmarsh, The theory of the Riemann Zeta-function, 2nd ed., Clarendon Press, Oxford, 1986. |
|
[9] | H. Hasse, “Ein Summierungsverfahren für die Riemannsche Zeta-Reihe,” Math. Z. 32, 458-464 (1930). |
|
[10] | S. Akiyama and Y. Tanigawa, “Multiple Zeta Values at Non-Positive Integers,” Ramanujan J. 5, 327-351 (2001). |
|
[11] | R.P. Brent and P. Zimmermann, Modern computer arithmetic, Cambridge University Press, New York, 2010. Sec. 4.7.2. |
|
[12] | R.P. Brent and D. Harvey, “Fast computation of Bernoulli, Tangent and Secant numbers.” Springer Proceedings in Mathematics and Statistics, vol. 50, 127-142 (2013). |
|