[1] | M. Abbas, B. Ali and S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory and Applications 2013, 2013: 243. |
|
[2] | I. Altun, G. Durmaz, Some fixed point theorems on ordered cone metric spaces, Rendiconti del Circolo Matematico di Palermo 58 (2009) 319-325. |
|
[3] | M. Arshad, M. Abbas, A. Hussain and N. Hussain, Generalized Dynamic Process for Generalized (f,L)-almost F-Contraction with Applications, J. Nonlinear Sci. Appl. 9 (2016), 1702-1715. |
|
[4] | M. Arshad, E. Ameer and A.Hussain, Hardy-Rogers-Type Fixed Point Theorems for α-GF-Contractions, Archivum Mathematicum (BRNO) Tomus 51 (2015), 129-141. |
|
[5] | M. Arshad, A. Shoaib, I. Beg, Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered complete dislocated metric space, Fixed Point Theory and Appl. (2013), 2013:115, 15 pages. |
|
[6] | M. Arshad, A. Shoaib, and P. Vetro, Common Fixed Points of a Pair of Hardy Rogers Type Mappings on a Closed Ball in Ordered Dislocated Metric Spaces, Journal of Function Spaces, 2013 (2013), Article ID 63818. |
|
[7] | M. Arshad , A. Shoaib, M. Abbas and A. Azam, Fixed Points of a pair of Kannan Type Mappings on a Closed Ball in Ordered Partial Metric Spaces, Miskolc Mathematical Notes, 14(3), 2013, 769-784. |
|
[8] | M. Arshad, A. Azam, M. Abbas and A. Shoaib, Fixed point results of dominated mappings on a closed ball in ordered partial metric spaces without continuity U.P.B. Sci. Bull., Series A, 76(2), 2014. |
|
[9] | A. Azam, M. Arshad, I. Beg, Common fixed points of two maps in cone metric spaces, Rendiconti del Circolo Matematico di Palermo 57 (2008) 433-441. |
|
[10] | I.A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37. |
|
[11] | I. Beg, M. Arshad , A. Shoaib, Fixed Point on a Closed Ball in ordered dislocated Metric Space, Fixed Point Theory, 16(2), 2015. |
|
[12] | V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory and Applications 2012:105 (2012). |
|
[13] | V. Berinde, F. Vetro, Fixed point for cyclic weak (Ψ, C)-contractions in 0-complete partial metric spaces, Filomat 27 (2013) 1405-1413. |
|
[14] | A. Bhatt and H. Chandra, Common fixed points for JH operators and occasionally weakly g-biased pairs under relaxed condition on probabilistic metric space, Journal of Function Spaces and Applications, vol. 2013, Article ID 846315, 6 pages, 2013. |
|
[15] | M. Boriceanu, Fixed Point theory for multivalued generalized contraction on a set with two b-metrics, studia Univ Babes, Bolya: Math. LIV (3) (2009), 1-14. |
|
[16] | M. Cosentino, P. Vetro, Fixed Point Results for F-Contractive Mappings of Hardy-Rogers-Type, Filomat 28:4 (2014), 715-722. |
|
[17] | N. Hussain, J. Ahmad and A. Azam, Generalized fixed point theorems for multi-valued α - ψ -contractive mappings, J. Inequal. Appl., 2014, 2014:348. |
|
[18] | N. Hussain, S. Al-Mezel and P. Salimi, Fixed points for ψ -graphic contractions with application to integral equations, Abstract and Applied Analysis, Volume 2013, Article ID 575869. |
|
[19] | N. Hussain, M. Arshad, A. Shoaib and Fahimuddin, Common Fixed Point results for α - ψ -contractions on a metric space endowed with graph, J. Inequalities and Appl., 2014, 2014:136. |
|
[20] | M. Jleli, H. Kumar, B. Samet and C. Vetro, On multivalued weakly Picard operators in partial Hausdorff metric spaces, Fixed Point Theory and Applications 2015, 2015: 52. |
|
[21] | Z. Kadelburg, L. Paunović, S. Radenović, A note on fixed point theorems for weakly T-Kannan and weakly T-Chatterjea contractions in b-metric spaces, Gulf Journal of Mathematics 3 (2015) 57-67. |
|
[22] | D. Klim and D. Wardowski, Fixed points of dynamic processes of set-valued F-contractions and application to functional equations, Fixed Point Theory and Applications (2015) 2015: 22. |
|
[23] | P. Kumar, M. S. Sachdeva and S. K. Banerjee, Some Fixed Point Theorems in b-metric Space, Turkish Journal of Analysis and Number Theory, 2014, 2(1), 19-22. |
|
[24] | A. Shoaib, M. Arshad and J. Ahmad, Fixed point results of locally cotractive mappings in ordered quasi-partial metric spaces, The Scientific World Journal, 2013 (2013), Article ID 194897, 8 pages. |
|
[25] | A. Shoaib, M. Arshad and M. A. Kutbi, Common fixed points of a pair of Hardy Rogers Type Mappings on a Closed Ball in Ordered Partial Metric Spaces, J. Comput. Anal. Appl., 17(2014), 255-264. |
|
[26] | A. Shoaib, α-η Dominated Mappings and Related Common Fixed Point Results in Closed Ball, Journal of Concrete and Applicable Mathematics, 13(1-2), 2015, 152-170. |
|
[27] | N. Shobkolaei, S. Sedghi, J. R. Roshan, andN.Hussain, Suzuki type fixed point results in metric-like spaces, Journal of Function Spaces and Applications, vol. 2013, Article ID 143686, 9 pages, 2013. |
|
[28] | S. Shukla, S. Radenović, C. Vetro, Set-valued Hardy-Rogers type contraction in 0-complete partial metric spaces, International Journal of Mathematics and Mathematical Sciences, Volume 2014, Article ID 652925, 9 pages. |
|
[29] | S. Shukla, S. Radenović, Z. Kadelburg, Some fixed point theorems for F-generalized contractions in 0-orbitally complete partial metric spaces, Theory and Applications of Mathematics and Computer Science 4(1) (2014) 87-98. |
|
[30] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Appl. 2012:94 (2012). |
|