Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: https://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2016, 4(6), 159-163
DOI: 10.12691/tjant-4-6-2
Open AccessArticle

New Approach of F-Contraction Involving Fixed Point on a Closed Ball

Aftab Hussain1, 2,

1Department of Mathematics, International Islamic University, H-10, Islam-abad, Pakistan

2Department of Mathematical Sciences, Lahore Leads University, Lahore, Pakistan

Pub. Date: November 05, 2016

Cite this paper:
Aftab Hussain. New Approach of F-Contraction Involving Fixed Point on a Closed Ball. Turkish Journal of Analysis and Number Theory. 2016; 4(6):159-163. doi: 10.12691/tjant-4-6-2

Abstract

The article is written with a view to introducing the new idea of F-contraction on a closed ball and have new theorems in a complete metric space. That is why this outcome becomes useful for the contraction of the mapping on a closed ball instead of the whole space. At the same time, some comparative examples are constructed which establish the superiority of our results. It can be stated that the results that have come into being give proof of extension as well as substantial generalizations and improvements of several well known results in the existing comparable literature.

Keywords:
metric space fixed point F contraction closed ball

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  M. Abbas, B. Ali and S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory Appl. 2013, 2013: 243.
 
[2]  T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed PoinTheory Appl. 2013.
 
[3]  Ö. Acar and I. Altun, A Fixed Point Theorem for Multivalued Mappings with δ-Distance, Abstr. Appl. Anal., Volume 2014, Article ID 497092, 5 pages.
 
[4]  M. Arshad, Fahimuddin, A. Shoaib and A. Hussain, Fixed point results for α-ψ-locally graphic contraction in dislocated qusai metric spaces, Math Sci., (2014), 7 pages.
 
[5]  M. Arshad , A. Shoaib, I. Beg, Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered complete dislocated metric space, Fixed Point Theory and Appl. (2013), 2013: 115, 15 pp.
 
[6]  M. Arshad, A. Shoaib, and P. Vetro, Common Fixed Points Of A Pair Of Hardy Rogers Type Mappings On A Closed Ball In Ordered Dislocated Metric Spaces, Journal of Function Spaces and Appl. 2013 (2013), article ID 638181, 9 pages.
 
[7]  A. Azam, S. Hussain and M. Arshad, Common fixed points of Chatterjea type fuzzy mappings on closed balls, Neural Computing & Applications, (2012) 21 (Suppl 1): S313-S317.
 
[8]  A. Azam, M. Waseem, M. Rashid, Fixed point theorems for fuzzy contractive mappings in quasi-pseudo-metric spaces, Fixed Point Theory Appl., 20132013:27.
 
[9]  S.Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math., 3 (1922) 133-181.
 
[10]  LB. Ćirić, A generalization of Banach.s contraction principle. Proc. Am. Math. Soc., 45, (1974) 267-273.
 
[11]  M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-Type, Filomat 28:4(2014), 715-722.
 
[12]  M. Edelstein, On fixed and periodic points under contractive mappings. J. Lond. Math. Soc., 37, 74-79 (1962).
 
[13]  B. Fisher, Set-valued mappings on metric spaces, Fundamenta Mathematicae, 112 (2) (1981) 141-145.
 
[14]  M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973) 604-608.
 
[15]  A. Hussain and M. Arshad, New Type of Multivalued F-Contraction Involving Fixed Point on Closed Ball, J. Math. Comp. Sci. Accepted.
 
[16]  A. Hussain, M. Arshad and Sami Ullah Khan, τ-Generalization of Fixed Point Results for F-Contractions, Bangmod Int. J. Math & Comp. Sci. 1(1) (2015), 136-146.
 
[17]  N. Hussain, M. Arshad, A. Shoaib and Fahimuddin, Common fixed point results for α-ψ-contractions on a metric space endowed with graph, J. Inequal. Appl., (2014) 2014: 136.
 
[18]  N. Hussain and P. Salimi, suzuki-wardowski type fixed point theorems for α-GF-contractions, Taiwanese J. Math., 20 (20) (2014).
 
[19]  N. Hussain, E. Karapınar, P. Salimi and F. Akbar, α-admissible mappings and related fixed point theorems, J. Inequal. Appl., 114 (2013) 1-11.
 
[20]  N. Hussain, P Salimi and A. Latif, Fixed point results for single and set-valued α-η-ψ-contractive mappings, Fixed Point Theory Appl. 2013, 2013: 212.
 
[21]  N. Hussain, E. Karapinar, P. Salimi, P. Vetro, Fixed point results for Gm-Meir-Keeler contractive and G-(α,ψ)-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013, 2013:34.
 
[22]  N. Hussain, S. Al-Mezel and P. Salimi, Fixed points for α-ψ-graphic con-tractions with application to integral equations, Abstr. Appl. Anal., (2013) Article 575869.
 
[23]  D. Jain, A. Padcharoen, P. Kumam and D. Gopal, A new approach to study fixed point of multivalued mappings in modular metric spaces and applications, Mathematics 2016, 4, 51.
 
[24]  E. Karapinar and B. Samet, Generalized (α-ψ) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., (2012) Article id:793486.
 
[25]  E. Kryeyszig., Introductory Functional Analysis with Applications, John Wiley & Sons, New York, (Wiley Classics Library Edition) 1989.
 
[26]  MA. Kutbi, M. Arshad and A. Hussain, On Modified α-η-Contractive mappings, Abstr. Appl. Anal., (2014) Article ID 657858, 7 pages.
 
[27]  MA. Kutbi, M. Arshad and A.Hussain, Multivalued Ćirić type α-η-GF- Contractions, Journal of Computational Analysis and Applications. Ac-cepted.
 
[28]  MA. Kutbi, M. Arshad and A.Hussain, Fixed Point Results for ´Ciri´c type α-η-GF-Contractions, journal of Computational Analysis and Applications 21 (3) 2016, 466-481.
 
[29]  G. Minak, A. Halvaci and I. Altun, Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28 (6) (2014), 1143-1151.
 
[30]  SB. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475-488.
 
[31]  M. Nazam, M. Arshad and A. Hussain, Fixed Point Theorems For Chatterjea’s type Contraction on Closed ball, Journal of Analysis and Number Theory. 5(1) 2017 1-8.
 
[32]  A. Padcharoen, D. Gopa, P. Chaipunya and P. Kumam, Fixed point and periodic point results for α- type F-contractions in modular metric spaces, Fixed Point Theory Appl. 2016, 2016: 39.
 
[33]  H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Poin Theory Appl. (2014) 2014:210.
 
[34]  H. Piri and P. Kumam, Fixed point theorems for generalized F-Suzukicontraction mappings in complete b- metric spaces, Fixed Point Theory Appl. 2016, 2016: 90.
 
[35]  M. Sgroi and C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27:7 (2013), 1259-1268.
 
[36]  P. Salimi, A. Latif and N. Hussain, Modified α-ψ-Contractive mappings with applications, Fixed Point Theory Appl. (2013) 2013:151.
 
[37]  SU. Khan, M. Arshad and A. Hussain, Two new Types of fixed point theorems for F-contraction, Journal of Advanced Studies in Topology, 7(4) 2016, 251-260.
 
[38]  NA. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl. 2013, Article ID 277 (2013).
 
[39]  M. Sgroi, C. Vetro, Multi-valued F-Contractions and the Solution of certain Functional and integral Equations, Filomat 27:7, (2013), 1259-1268.
 
[40]  A. Shoaib, M. Arshad and J. Ahmad, Fixed point results of locally cotractive mappings in ordered quasi-partial metric spaces, The Scientific World Journal, 2013 (2013), Article ID 194897, 8 pp.
 
[41]  B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ –contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165.
 
[42]  D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed PoinTheory Appl. (2012) Article ID 94.