[1] | J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge Univ. Press, Cambridge, 2003. |
|
[2] | O. Bordellès and B. Cloitre, Bounds for the Kolakoski Sequence, Journal of Integer Sequences, Vol. 14 (2011). |
|
[3] | S. Brlek, S. Dulucq, A. Ladouceur, and L. Vuillon, Combinatorial properties of smooth infinite words, Theor. Comp. Sci. 352 (2006), 306-317. |
|
[4] | K. Culik, J. Karhumäki, Iterative devices generating infinite words, Lec. Notes in Comp. Sc. 577 (1992), 531-544. |
|
[5] | A. Carpi, On repeated factors in C∞-words, Inf. Process. Lett. 52 (1994), 289-294. |
|
[6] | V. Chvàtal, Notes on the Kolakoski sequence, DIMACS Technical Report, 93-84. (1994). |
|
[7] | The Kolakoski Transform of words, Inf. Process. Lett. 52 (1994), 289-294. |
|
[8] | F. M. Dekking, What is the long range order in the Kolakoski sequence?, The Mathematics of Long–range Aperiodic Order, NATO Adv. Sci. Inst. Ser. C Maths. Phys. Sci., 489, Kluwer Acad. Publ., Dordrecht (1997), 115-125. |
|
[9] | J. M. Fédou and G. Fici, Some Remarks on Differentiable Sequences and Recursivity, Journal of Integer Sequences, Vol. 13 (2010). |
|
[10] | Y. Huang, The Complexity of Cbω-words of the form ωχω, Theoritical Computer Science, Vol. 410 (2009), 4892-4904. |
|
[11] | Keane and C. Series (eds.), Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, 1991, pp. 35-70. |
|
[12] | C.Kimberling,http://faculty.evansville.edu/ck6/integer/index.html. |
|
[13] | W. Kolakoski, Problem 5304: Self Generating Runs, Amer. Math. Monthly 72 (1965), 674. |
|
[14] | E. J. Kupin and E. S. Rowland, Bounds on the frequency of 1 in the Kolakoski word, arXiv:0809.2776 [math. CO] Sept 16, 2008. |
|
[15] | F. M. Dekking, What is the long range order in the Kolakoski sequence?, The Mathematics of Long-Range A eriodic Order, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 489, Kluwer Acad. Publ., Dordrecht (1997), 115-125. |
|
[16] | Rufus Oldenburger, Exponent trajectories in symbolic dynamics, Trans Amer. Math. Soc. 46 (1939), 453-466. |
|
[17] | N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org. |
|
[18] | J. Shallit, Open Problems in Automata Theory:An Idiosyncratic View, School of Computer Science. |
|
[19] | J. Shallit, Emerging Applications of Number Theory. Springer Verlag Coll. The IMA Volumes in Ms and its Applications (n◦ 109), (1999), 547-570. |
|
[20] | B. Sing, More Kolakoski sequences, Integers A14, 11B (2011). |
|
[21] | B. Sing, Spektrale Eigenschaften der Kolakoski-Sequenzen, Diploma thesis, Universit¨at T¨ubingen, (2002). |
|
[22] | R. Steacy. Structure in the Kolakoski sequence. Bull. European Assoc. Theor. Comput. Sci., No. 59, (1996), 173-182. |
|
[23] | B. Steinsky, A recursive formula for the Kolakoski sequence, J. Integer Seq. 9 (2006), Article 06.3.7. |
|