Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: https://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2016, 4(2), 31-34
DOI: 10.12691/tjant-4-2-1
Open AccessArticle

On Fixed Points for Chatterjea’s Maps in b-Metric Spaces

Radka Koleva1, and Boyan Zlatanov2

1Department of Mathematics and Physics, University of Food Technologies, Plovdiv, Bulgaria

2Faculty of Mathematics and Informatics, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria

Pub. Date: May 19, 2016

Cite this paper:
Radka Koleva and Boyan Zlatanov. On Fixed Points for Chatterjea’s Maps in b-Metric Spaces. Turkish Journal of Analysis and Number Theory. 2016; 4(2):31-34. doi: 10.12691/tjant-4-2-1

Abstract

In this paper we find sufficient conditions for the existence and uniqueness of fixed points of Chatterjea’s maps in b-metric space. These conditions do not involve the b-metric constant. We establish a priori error estimate for the sequence of successive iterations. The error estimate, which we present is better that the well-known one for a wide class of Chatterjea’s maps in metric spaces.

Keywords:
fixed point Chatterjea’s map b-Metric space a priori error estimate

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Allahyari, R., Arab, R., Haghighi A.S., “A generalization on weak contractions in partially ordered b-metric spaces and its application to quadratic integral equations”, Journal of Inequalities and Applications, 2014 (355), 2014.
 
[2]  Bakhtin, I.A., “The contraction mapping principle in almost metric spaces”, Funct. Anal., Gos. Ped. Inst., Unianowsk, 30, 26-37, 1989.
 
[3]  Banach, S., “Sur les opérations dans les ensembles abstraits et leur application aux équations integrals”, Fund. Math., 3, 133-181, 1922.
 
[4]  Berinde, V., Iterative approximation on fixed points, Springer, Berlin, 2007.
 
[5]  Bota, M., Molnár, A., Varga, C., “On Ekeland’s variationals principle in b-metric spaces”, Fixed point theory, 12 (2), 21-28, 2011.
 
[6]  Chatterjea, S., “Fixed point theorems”, C. R. Acad. Bulgare Sci. 25, 727-730, 1972.
 
[7]  Czrezvik, S., “Contraction mappings in b-metric spaces”, Acta Mathematica et Informatica Universitatis Ostravlensis, 1 (1), 5-11, 1993.
 
[8]  Dubey, A.K., Shukla, R., Dubey, R.P., “Some fixed point results in b-metric spaces”, Asian journal of mathematics and applications, 2014, Article ID ama0147, 6 pages, 2014.
 
[9]  George, R., Fisher, B., “Some generalized results of fixed points in cone b-metric spaces”, Mathematica Moravica, 17 (2), 39-50, 2013.
 
[10]  Farkas, C., Molnár, A.E., Nagy, S., “A generalized variational principle in b-metric spaces”, Le Matematiche, LXIX, 205-221, 2014.
 
[11]  Isufati, A., “Rational Contractions in b-Metric Spaces”, Journal of Advances in Mathematics, 5 (3), 803-811, Jan, 2014.
 
[12]  Mehmet K., Hükmi K., “On Some Well Known Fixed Point Theorems in b-Metric Spaces”, Turkish Journal of Analysis and Number Theory, 1 (1), 13-16, 2013.
 
[13]  Mishra, P.K., Sachdeva, S., Banerjee, S.K., “Some fixed point theorems in b-metric space”,Turkish Journal of Analysus and Number Theory, 2 (1), 19-22, 2014.
 
[14]  Rhoades, B.E., “A comparison of various definitions of contractive mappings”, Transactions of the American Mathematical Society, 226, 257-290, 1977.
 
[15]  Rhoades, B.E., Sessa, S., Khan, M.S., Khan, M.D., “Some fixed point theorems for Hardy-Rogers type mappings, Internat. J. Math. & Math. Sci., 7(1), 75-87, 1984.
 
[16]  Sintunavarat, W., Plubtieng, S., Katchang, P., “Fixed point result and applications on b-metric space endowed with an arbitrary binary relation”, Fixed Point Theory Appl., Article ID 296, 2013.