Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: https://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2015, 3(6), 145-148
DOI: 10.12691/tjant-3-6-1
Open AccessArticle

On Semi-symmetric Para Kenmotsu Manifolds

T. Satyanarayana1 and K. L. Sai Prasad2,

1Department of Mathematics, Pragathi Engineering College, Surampalem, Andhra Pradesh, India

2Department of Mathematics, Gayatri Vidya Parishad College of Engineering for Women, Visakhapatnam, Andhra Pradesh, India

Pub. Date: December 18, 2015

Cite this paper:
T. Satyanarayana and K. L. Sai Prasad. On Semi-symmetric Para Kenmotsu Manifolds. Turkish Journal of Analysis and Number Theory. 2015; 3(6):145-148. doi: 10.12691/tjant-3-6-1

Abstract

In this paper we study some remarkable properties of para Kenmotsu (briefly p-Kenmotsu) manifolds satisfying the conditions R(X,Y).R=0, R(X,Y).P=0 and P(X,Y).R=0, where R(X, Y) is the Riemannian curvature tensor and P(X, Y) is the Weyl projective curvature tensor of the manifold. It is shown that a semi-symmetric p-Kenmotsu manifold (Mn, g) is of constant curvature and hence is an sp-Kenmotsu manifold. Also, we obtain the necessary and sufficient condition for a p-Kenmotsu manifold to be Weyl projective semi-symmetric and shown that the Weyl projective semi-symmetric p-Kenmotsu manifold is projectively flat. Finally we prove that if the condition P(X,Y).R=0 is satisfied on a p-Kenmotsu manifold then its scalar curvature is constant.

Keywords:
para Kenmotsu manifolds curvature tensor projective curvature tensor scalar curvature

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Adati,T. and Matsumoto, K, On conformally recurrent and conformally symmetric p-Sasakian manifolds, TRU Math., 13, 25-32, 1977.
 
[2]  Adati, T. and Miyazawa, T, On P-Sasakian manifolds satisfying certain conditions, Tensor (N.S.), 33, 173-178, 1979.
 
[3]  Bishop, R. L. and Goldberg, S. I, On conformally flat spaces with commuting curvature and Ricci transformations, Canad. J. Math., 14(5), 799-804, 1972.
 
[4]  Cartan, E. Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math. France, 54, 214-216, 1926.
 
[5]  De, U. C, Cihan Ozgur, Kadri Arslan, Cengizhan Murathan and Ahmet Yildiz, On a type of P-Sasakian manifolds, Math. Balkanica (N.S.), 22, 25-36, 2008.
 
[6]  Kenmotsu, K, A class of almost contact Riemannian manifolds, Tohoku Math. Journal, 24, 93-103, 1972.
 
[7]  Sato, I, On a structure similar to the almost contact structure, Tensor (N.S.), 30, 219-224, 1976.
 
[8]  Satyanarayana, T. and Sai Prasad, K. L, On a type of Para Kenmotsu Manifold, Pure Mathematical Sciences, 2(4), 165 – 170, 2013.
 
[9]  Sinha, B. B. and Sai Prasad, K. L, A class of almost para contact metric Manifold, Bulletin of the Calcutta Mathematical Society, 87, 307-312, 1995.
 
[10]  Szabo, Z. I, Structure theorems on Riemannian spaces satisfying R(X,Y).R =0, I. The local version. J. Diff. Geom., 17, 531-582, 1982.
 
[11]  Yano, K, Integral formulas in Riemannian Geometry, Pure and Applied Mathematics, 1, Marcel Dekker, Inc., New York, 1970.
 
[12]  Yano, K. and Kon, M, Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.