Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: https://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2015, 3(3), 90-93
DOI: 10.12691/tjant-3-3-5
Open AccessArticle

Symmetric Identities Involving q-Frobenius-Euler Polynomials under Sym (5)

Serkan Araci1, , Ugur Duran2 and Mehmet Acikgoz2

1Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, Gaziantep, TURKEY

2University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, Gaziantep, TURKEY

Pub. Date: October 15, 2015

Cite this paper:
Serkan Araci, Ugur Duran and Mehmet Acikgoz. Symmetric Identities Involving q-Frobenius-Euler Polynomials under Sym (5). Turkish Journal of Analysis and Number Theory. 2015; 3(3):90-93. doi: 10.12691/tjant-3-3-5

Abstract

Following the definition of q-Frobenius-Euler polynomials introduced in [3], we derive some new symmetric identities under sym (5), also termed symmetric group of degree five, which are derived from the fermionic p-adic q-integral over the p-adic numbers field.

Keywords:
Symmetric identities q-Frobenius-Euler polynomials Fermionic p-adic q-integral on p Invariant under S5

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  E. Ağyüz, M. Acikgoz and S. Araci, A symmetric identity on the q-Genocchi polynomials of higher order under third Dihedral group D3, Proc. Jangjeon Math. Soc. 18 (2015), No. 2, pp. 177-187.
 
[2]  S. Araci, M. Acikgoz, E. ¸Sen, On the extended Kim.s p-adic q-deformed fermionic integrals in the p-adic integer ring, J. Number Theory 133 (2013) 3348-3361.
 
[3]  S. Araci, M. Acikgoz, On the von Staudt-Clausen.s theorem related to q-Frobenius-Euler number, J. Number Theory (2016).
 
[4]  S. Araci and M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. 22 (2012), No. 3, pp. 399-406.
 
[5]  S. Araci, E. ¸Sen, M. Acikgoz, Theorems on Genocchi polynomials of higher order arising from Genocchi basis, Taiwanese J. Math.(2014) Vol. 18, No. 2, pp. 473-482.
 
[6]  D. V. Dolgy, Y. S. Jang, T. Kim, H. I. Kwon, J.-J. Seo, Identities of symmetry for q-Euler polynomials derived from fermionic integral onp under symmetry group S3, Applied Mathematical Sciences, Vol. 8 (2014), no. 113, 5599-5607.
 
[7]  D. V. Dolgy, T. Kim, S.-H. Rim, S.-H. Lee, Some symmetric identities for h-extension of q-Euler polynomials under third dihedral group D3, International Journal of Mathematical Analysis Vol. 8 (2014), no. 48, 2369-2374.
 
[8]  Y. He and S. J. Wang, New formulae of products of the Frobenius-Euler polynomials, J. Ineq. Appl. (2014), 2014:261.
 
[9]  Y. S. Jang, T. Kim, S.-H. Rim, J.-J. Seo, Symmetry Identities for the Generalized Higher-Order q-Bernoulli Polynomials under S3, International J. Math. Anal., Vol. 8 (2014), no. 38, 1873-1879.
 
[10]  T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9 (2002), no. 3, 288-299.
 
[11]  T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on p, Russian J. Math. Phys., 16, 484-491 (2009).
 
[12]  T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, Journal of Nonlinear Mathematical Physics 14 (1) 15-27, (2007).
 
[13]  T. Kim and J. J. Seo, New identities of symmetry for Carlitz.s-type q-Bernoulli polynomials under symmetric group of degree five, International Journal of Mathematical Analysis Vol. 9, 2015, no. 35, 1707-1713.
 
[14]  T. Kim and J. J. Seo, Some identities of symmetry for Carlitz-type q-Euler polynomials invariant under symmetric group of degree five, International Journal of Mathematical Analysis Vol. 9, 2015, no. 37, 1815-1822.
 
[15]  T. Kim, Some New identities of symmetry for higher-order Carlitz q-Bernoulli polynomials arising from p-adic q-integral on p under the symmetric group of degree five, Applied Mathematical Sciences, Vol. 9, 2015, no. 93, 4627-4634.
 
[16]  D. S. Kim and T. Kim, Some identities of symmetry for Carlitz q-Bernoulli polynomials invariant under S4, Ars Combinatoria, Vol. CXXIII, pp. 283-289, 2015.
 
[17]  D. S. Kim and T. Kim, Some new identities of Frobenius-Euler numbers and polynomials, J. Ineq. Appl. (2012), 2012:307.
 
[18]  Y. Simsek, Generating functions for q-Apostol type Frobenius-Euler numbers and polynomials, Axioms (2012), 1, 395-403.
 
[19]  H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Camb. Philos. Soc. 129, 77-84 (2000).
 
[20]  H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5, 390-444 (2011).
 
[21]  B. Y. Yasar and M. A. Özarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their di¤ erential equations, NTMSCI 3 (2015), No. 2, 172-180.