[1] | E. Ağyüz, M. Acikgoz and S. Araci, A symmetric identity on the q-Genocchi polynomials of higher order under third Dihedral group D3, Proc. Jangjeon Math. Soc. 18 (2015), No. 2, pp. 177-187. |
|
[2] | S. Araci, M. Acikgoz, E. ¸Sen, On the extended Kim.s p-adic q-deformed fermionic integrals in the p-adic integer ring, J. Number Theory 133 (2013) 3348-3361. |
|
[3] | S. Araci, M. Acikgoz, On the von Staudt-Clausen.s theorem related to q-Frobenius-Euler number, J. Number Theory (2016). |
|
[4] | S. Araci and M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. 22 (2012), No. 3, pp. 399-406. |
|
[5] | S. Araci, E. ¸Sen, M. Acikgoz, Theorems on Genocchi polynomials of higher order arising from Genocchi basis, Taiwanese J. Math.(2014) Vol. 18, No. 2, pp. 473-482. |
|
[6] | D. V. Dolgy, Y. S. Jang, T. Kim, H. I. Kwon, J.-J. Seo, Identities of symmetry for q-Euler polynomials derived from fermionic integral onp under symmetry group S3, Applied Mathematical Sciences, Vol. 8 (2014), no. 113, 5599-5607. |
|
[7] | D. V. Dolgy, T. Kim, S.-H. Rim, S.-H. Lee, Some symmetric identities for h-extension of q-Euler polynomials under third dihedral group D3, International Journal of Mathematical Analysis Vol. 8 (2014), no. 48, 2369-2374. |
|
[8] | Y. He and S. J. Wang, New formulae of products of the Frobenius-Euler polynomials, J. Ineq. Appl. (2014), 2014:261. |
|
[9] | Y. S. Jang, T. Kim, S.-H. Rim, J.-J. Seo, Symmetry Identities for the Generalized Higher-Order q-Bernoulli Polynomials under S3, International J. Math. Anal., Vol. 8 (2014), no. 38, 1873-1879. |
|
[10] | T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9 (2002), no. 3, 288-299. |
|
[11] | T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on p, Russian J. Math. Phys., 16, 484-491 (2009). |
|
[12] | T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, Journal of Nonlinear Mathematical Physics 14 (1) 15-27, (2007). |
|
[13] | T. Kim and J. J. Seo, New identities of symmetry for Carlitz.s-type q-Bernoulli polynomials under symmetric group of degree five, International Journal of Mathematical Analysis Vol. 9, 2015, no. 35, 1707-1713. |
|
[14] | T. Kim and J. J. Seo, Some identities of symmetry for Carlitz-type q-Euler polynomials invariant under symmetric group of degree five, International Journal of Mathematical Analysis Vol. 9, 2015, no. 37, 1815-1822. |
|
[15] | T. Kim, Some New identities of symmetry for higher-order Carlitz q-Bernoulli polynomials arising from p-adic q-integral on p under the symmetric group of degree five, Applied Mathematical Sciences, Vol. 9, 2015, no. 93, 4627-4634. |
|
[16] | D. S. Kim and T. Kim, Some identities of symmetry for Carlitz q-Bernoulli polynomials invariant under S4, Ars Combinatoria, Vol. CXXIII, pp. 283-289, 2015. |
|
[17] | D. S. Kim and T. Kim, Some new identities of Frobenius-Euler numbers and polynomials, J. Ineq. Appl. (2012), 2012:307. |
|
[18] | Y. Simsek, Generating functions for q-Apostol type Frobenius-Euler numbers and polynomials, Axioms (2012), 1, 395-403. |
|
[19] | H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Camb. Philos. Soc. 129, 77-84 (2000). |
|
[20] | H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5, 390-444 (2011). |
|
[21] | B. Y. Yasar and M. A. Özarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their di¤ erential equations, NTMSCI 3 (2015), No. 2, 172-180. |
|