[1] | F.V. Atkinson, The mean value of the Riemann zeta-function, Acta Math. 81(1949), 353-376. |
|
[2] | S.W. Graham and G. Kolesnik, Van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series 126, Cambridge University Press, Cambridge, 1991. vi+120 pp. |
|
[3] | A. Ivić, Large values of the error term in the divisor problem, Inventiones Math. 71(1983), 513-520. |
|
[4] | A. Ivić, The Riemann zeta-function, John Wiley & Sons, New York, 1985 (2nd ed. Dover, Mineola, New York, 2003). |
|
[5] | A. Ivić, The mean values of the Riemann zeta-function, LNs 82, Tata Inst. of Fundamental Research, Bombay (distr. by Springer Verlag, Berlin etc.), 1991. |
|
[6] | A. Ivić, On the Riemann zeta-function and the divisor problem, Central European J. Math. (2)(4) (2004), 1-15; II, ibid. (3)(2) (2005), 203-214; III, Annales Univ. Sci. Budapest, Sect. Comp. 29(2008), 3-23.; IV, Uniform Distribution Theory 1(2006), 125-135. |
|
[7] | A. Ivić, On the mean square of the zeta-function and the divisor problem, Annales Acad. Scien. Fennicae Mathematica 23(2007), 1-9. |
|
[8] | A. Ivić, Some remarks on the moments of |(ζ(1/2+ it)| in short intervals, Acta Math. Hung. 119(2008), 15-24. |
|
[9] | A. Ivić, On some mean square estimates for the zeta-function in short intervals, Annales Univ. Sci. Budapest., Sect. Comp. 40(2013), 321-335. |
|
[10] | A. Ivić, On some mean value results for the zeta-function in short intervals, Acta Arith. 162.2(2014), 141-158. |
|
[11] | M. Jutila, Riemann’s zeta-function and the divisor problem, Arkiv Mat. 21(1983), 75-96 and II, ibid. 31(1993), 61-70. |
|
[12] | M. Jutila, On a formula of Atkinson, in “Coll. Math. Sci. J´anos Bolyai 34, Topics in classical Number Theory, Budapest 1981”, North-Holland, Amsterdam, 1984, pp. 807-823. |
|
[13] | T. Meurman, A generalization of Atkinson’s formula to L-functions, Acta Arith. 47(1986), 351-370. |
|
[14] | O. Robert and P. Sargos, Three-dimensional exponential sums with monomials, J. reine angew. Math. 591(2006), 1-20. |
|
[15] | K.-M. Tsang, Counting lattice points in the sphere, Bull. London Math. Soc. 32(2000), 679-688. |
|