[1] | C. Niculescu, L. E. Persson, Convex functions and their application, Springer, Berlin Heidelberg New York, (2004). |
|
[2] | M. W. Alomari, M. Darus, U.S. Kirmaci. Some inequalities of Hermite-Hadamard type for s-convex functions. Acta Math. Sci. Ser. B Engl. Ed. 31 (4), 1643-1652 (2011). |
|
[3] | S. S. Dragomir, R. P. Agarwal. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (5) (1998) 91-95. |
|
[4] | U. S. Kirmaci, M. E. Özdemir. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 153 (2004) 361-368. |
|
[5] | U.S. Kirmaci. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147 (1) (2004), 137-146. |
|
[6] | H. Kavurmaci, M. Avci, M. E. Özdemir. New inequalities of Hermite-Hadamard type for convex functions with applications ar Xiv: 1006. 1593 vl [math. CA] |
|
[7] | H. Hudzik, L. Maligrada. Some remarks on s-convex functions, Aequationes Math. 48 (1994) 100-111. |
|
[8] | S. S. Dragomir, C. E. M. Pearce. Selected Topic on Hermite- Hadamard Inequalities and Applications, Melbourne and Adelaide, December, 2000. |
|
[9] | S. S. Dragomir, S. Fitzpatrick. The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999), 687-696. |
|
[10] | U. S. Kirmaci, K. Klaričić Bakula, M. E. Özdemir, J. Pečarić. Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193 (1) (2007) 26-35. |
|
[11] | M. Tunç. On some new inequalities for convex functions, Turk J Math 35 (2011), 1-7. |
|
[12] | M. Tunç. New integral inequalities for s-convex functions, RGMIA Research Report Collection Volume 13, Issue 2, 2010. |
|
[13] | R.-F. Bai, F.Qi, B.-Y. Xi. Hermite-Hadamard type inequalities for the m-and (α,m)-logarithmically convex functions. Filomat 27 (1), 1-7 (2013). |
|
[14] | S.-P. Bai, F. Qi. Some inequalities for (s 1, m 1)-(s 2, m 2)-convex functions on the co-ordinates. Glob. J. Math. Anal. 1 (1), 22-28 (2013). |
|
[15] | B.-Y. Xi, F. Qi. Hermite-Hadamard type inequalities for functions whose derivatives are of convexities. Nonlinear Funct. Anal. Appl. 18 (2), 163-176 (2013). |
|
[16] | S. Qaisar, C. He. S. Hussain. On New Inequalities of Hermite-Hadamard type for generalized Convex Functions. Italian journal of pure and applied mathematics. In Press. |
|