Turkish Journal of Analysis and Number Theory
ISSN (Print): 2333-1100 ISSN (Online): 2333-1232 Website: https://www.sciepub.com/journal/tjant
Open Access
Journal Browser
Go
Turkish Journal of Analysis and Number Theory. 2019, 7(4), 113-116
DOI: 10.12691/tjant-7-4-3
Open AccessArticle

Generating Functions of Modified Pell Numbers and Bivariate Complex Fibonacci Polynomials

Souhila Boughaba1, Ali Boussayoud1, and Khadidja Boubellouta1

1LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

Pub. Date: August 10, 2019

Cite this paper:
Souhila Boughaba, Ali Boussayoud and Khadidja Boubellouta. Generating Functions of Modified Pell Numbers and Bivariate Complex Fibonacci Polynomials. Turkish Journal of Analysis and Number Theory. 2019; 7(4):113-116. doi: 10.12691/tjant-7-4-3

Abstract

In this paper, we introduce a operator in order to derive a new generating functions of modified k- Pell numbers, Gaussian modified Pell numbers. By making use of the operator defined in this paper, we give some new generating functions for Bivariate Complex Fibonacci and Lucas Polynomials, modified Pell Polynomials and Gaussian modified Pell Polynomials.

Keywords:
Symmetric functions Generating functions modified k- Pell numbers Bivariate Complex Fibonacci Polynomials Bivariate Complex Lucas Polynomials

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  P. Catarino, H. Campos, Incomplete k -Pell, k -Pell Lucas and modified k -Pell numbers, Hacet. J. Math. Stat. 46(3), 361-372, 2017.
 
[2]  T. Yagmur, N. Karaaslan, Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence, Aksaray J. Sci. Eng. 2(1), 63-72, 2018.
 
[3]  M. ASCI, E. GUREL, On Bivariate Complex Fibonacci and Lucas Polynomials, Conference on Mathematical Sciences ICM 2012, March 11-14, 2012.
 
[4]  A.F Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32, 437-446, 1965.
 
[5]  N. Karaaslan, A Note on Modified Pell Polynomials, Aksaray J. Sci. Eng. 3, 1-7, 2019.
 
[6]  A. Boussayoud, M. Kerada , Symmetric and Generating Functions, Int. Electron. J. Pure Appl. Math. 7, 195-203, 2014.
 
[7]  A. Boussayoud, M.kerada, M, Boulyer, A simple and accurate method for determination of some generalized sequence of numbers, Int.J. Pure Appl Math. 108, 503-511, 2016.
 
[8]  A. Abderrezzak, Généralisation d'identité s de Carlitz. Howard et Lehmer. Aequ. Math. 49, 36-46, 1995.
 
[9]  A. Boussayoud, M. Kerada, N. Harrouche, On the k-Lucas numbers and Lucas Polynomials, Turkish Journal of Analysis and Number. 5, 121-125, 2017.
 
[10]  A. Boussayoud, On some identities and generating functions for Pell-Lucas numbers, Online J. Anal. Comb. 12, 1-10, 2017.
 
[11]  A. Boussayoud, N.Harrouche, Complete symmetric functions and k-Fibonacci numbers. Commun. Appl. Anal. 20, 457-465, 2016.
 
[12]  A. Boussayoud, M.Kerada, R.Sahali, Symmetrizing Operations on Some Orthogonal Polynomails, Int. Electron. J. Pure Appl. Math. 9, 191-199, 2015.
 
[13]  A. Boussayoud, R.Sahali, The application of the operator in the series . J. Adv. Res. Appl. Math. 7, 68-75, 2015.
 
[14]  A. Boussayoud, M. Kerada, Symmetric and Generating Functions, Int. Electron. J. Pure Appl. Math. 7, 195-203, 2014.
 
[15]  A. Boussayoud, M. Kerada, R.Sahali, W.Rouibah, Some Applications on Generating Functions, J. Concr. Appl. Math. 12, 321-330, 2014.
 
[16]  A. Boussayoud, L'action de l'opérateur sur la série (Doctoral dissertation), Mohamed Seddik Ben Yahia University, Jijel, Algeria (2017).
 
[17]  A.F. Horadam, J.M. Mahon, Pell and Pell-Lucas Polynomials, Fibonacci Quarterly. 23, 7-20, 1985.
 
[18]  A. Pintér, H. M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo. 48, 591-596, 1999.
 
[19]  C. Bolat, H Kose, On the Properties of k-Fibonacci Numbers, Int. J. Contemp. Math. Sciences. 5, 1097-1105, 2010.
 
[20]  D. Foata and G-N. Han, Nombres de Fibonacci et Polynômes Orthog onaux, Leonardo Fibonacci: il tempo, le opere, l'eredità scientifica, 179-200, 1994.
 
[21]  D. Tasci and M. Cetin Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modelling. 52, 1763-1770, 2010.
 
[22]  D.V Kruchinin, V.V. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, J. Math. Anal. Appl. 404 , 161.171, 2013.
 
[23]  G. B. Djordjevic, Generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers, Fibonacci Q. 42, 106-113, 2004.
 
[24]  G. B. Djordjevic and H. M. Srivastava, Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Math. Comput. Modelling. 42, 1049-1056, 2005.
 
[25]  I. Mezo, Several Generating Functions for second-order recurrence sequences, J. Integer Seq. 12, 1-16, 2009.
 
[26]  A. Abderrezzak, Généralisation de la transformation d'Euler d'une série formelle. Adv. Math. 103, 180-195 , 1994.
 
[27]  I.G.Macdonald, Symmetric Functions and Hall Polynomias. Oxford University Press, Oxford (1979).