[1] | Munoz, D.P. (2002). Commentary: Saccadic eye movements: Overview of neural circuitry. Prog Brain Res. 140. 89-96. |
|
[2] | Sparks, D.L. (2002). The brainstem control of saccadic eye movements. Rev Nat Neurosci. 3, 952-964 . |
|
[3] | Kowler, E. & Steinman, R. M. (1977). The role of small saccades in counting. Vision Res. 17, 141-146. |
|
[4] | Kowler, E. & Steinman, R. M. (1979). Miniature saccades: eye movements that do not count. Vision Res. 19, 105-108. |
|
[5] | Kowler, E. & Steinman, R. M. (1980). Small saccades serve no useful purpose: reply to a letter by R. W. Ditchburn. Vision Res. 20, 273-276. |
|
[6] | Conde, S. M., Macknik, S. L. & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience. 229-240. |
|
[7] | Conde, S. M., Macknik, S.L. & Hubel, D. H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. PNAS. 99, 13920-13925. |
|
[8] | Conde, S. M., Millan, J.O. & Macknik, S. L. (2013). The impact of micro- saccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience. 14, 83-96. |
|
[9] | Engbert, R., Mergenthaler, K., Sinn, P. & Pikovsky, A. (2011). An integrated model of fixational eye movements and microsaccades. PNAS. 108, 765-770. |
|
[10] | Naoko Inaba. & Kenji Kawano. (2014). Neurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements. PNAS. 111, 7825-7830. |
|
[11] | Schütz, A.C., Trommershäuser, J. & Gegenfurtner, K.R. (2012). Dynamic integration of information about salience and value for saccadic eye movements. PNAS. 109, 7547-7552. |
|
[12] | Segal, I.Y. et al. (2015). Decorrelation of retinal response to natural scenes by fixational eye movements. PNAS. 112, 3110-3115. |
|
[13] | Chua, H. F., Boland, J. E. & Nisbett, R. E. (2005). Cultural variation in eye movements during scene perception. PNAS. 102, 12629-12633. |
|
[14] | Goeke, C. et al. (2016). Cultural background shapes spatial reference frame proclivity. Scientific Reports. 5(11426), 1-13. |
|
[15] | Graf, A. B. A. & Andersen, R. A. (2014). Brain–machine interface for eye movements. PNAS. 111, 17630-17635. |
|
[16] | Levy, R., Bicknell, K., Slattery, T. & Rayner, K. (2008). Eye movement evidence that readers maintain and act on uncertainty about past linguistic input. PNAS. 105, 10131-10136. |
|
[17] | Hanke, M. et al. (2016). A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation. Scientific Report.160092, 1-15. |
|
[18] | Namazi, H., Kulish, V. V. & Akrami, A. (2016). The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal. Scientific Reports. 6, 26639. |
|
[19] | Schotter, E. R., Lee, M., Reiderman, M. & Rayner, K. (2015). The effect of contextual constraint on parafoveal processing in reading. Journal of Memory and Language. 118-139. |
|
[20] | Watson, F.S., Leekam, S.R., Benson, V., Frank, M.C. & Findlay, J. (2009). Eye-movements reveal. Neuropsychologia. 47, 248-257. |
|
[21] | Satoko Hisanaga., Kaoru Sekiyama.,Tomohiko Igasaki. & Nobuki Murayama. (2016). Language/ Culture Modulates Brain and Gaze Processes in Audiovisual Speech Perception. Scientific Reports. 6, 35265. |
|
[22] | Zhao Songnian. et al. (2014). The representation of visual depth perception based on the plenoptic function in the retina and its neural computation in visual cortex V1. BMC Neuroscience. 15, 1-17. |
|
[23] | Songnian Z., Qi Z., Zhen J., Guozheng Y. & Li Y. (2010). Neural computation of visual imaging based on Kronecker product in the primary visual cortex. BMC Neuroscience. 11, 1–14. |
|
[24] | Songnian Z., Qi Z., Zhen J., GuoZheng Y. & Li Y. (2010). A computational model of early vision based on synchronized response and inner product operation. Neurocomputing. 73, 3229-3241. |
|
[25] | Zhao S., Xiong X., Yao G. & Fu Z. (2003). A computational model as neurodecoder based on synchronous oscillation in the visual cortex. Neural Computation.15, 2399-2418. |
|
[26] | Devore, J.L. (2015). Probability and Statistics for Engineering and the Sciences. (Ninth Edition CENGAGE Learning, Boston, MA, USA, 276-309; 361-408). |
|
[27] | Ross, S. M. (2014). Introduction to Probability and Statistics for Engineers and Scientists.(Fifth Edition, Academic Press of Elsevier, MA, USA, 235-285). |
|
[28] | Mona Lisa portrait is taken from http://pic.sogou.com; which is public web in China. Of course, portrait of Mona Lisa can be taken from other web, such as: www.megamonalisa.com/;www.pbs.org/treasuresoftheworld/mona_lisa/mmain.html; https://en.wikipedia.org/ wiki/Mona_Lisa. |
|
[29] | Corney, D.R. & Lotto, B. (2007). What Are Lightness Illusions and Why Do We See Them? PLoS Computational Biology. 3, 1790-1800. |
|
[30] | The old woman and the young girl illusion can be taken from following web: http://mathworld.wolfram.com/YoungGirl-OldWomanIllusion.html. |
|
[31] | Frisby, J. P. & Stone, J. V. (2010). Seeing: The Computational Approach to Biological Vision. (Oxford University Press. London: Houghton Mifflin). |
|
[32] | Perrinet, L.U. & Bednar, J. A. (2015). Edge co-occurrences can account for rapid categorization of natural versus animal images. Scientific Reports. 5, 1-7. |
|
[33] | Figure 2 with permission from Li Xiaolu ; and the portrait is quoted from http://www.tupianzj.com/mingxing/xiezhen/xuqing/; it also can be taken from other web: http://weibo.com/lixiaolu |
|
[34] | Cambers, D. & Reisberg, D. (1985). Can mental images be ambguous?, J. Exp. Psychol.: Human Perception and Performance. 11, 317-328. |
|
[35] | Franz, V.H. & Scharnowski, F. G. (2005). Illusion effects on grasping are temporally constant not dynamic. J. Exp. Psychol.: Hum Percept Perform. 31, 1359-78. |
|
[36] | Munoz, D.P. (2002). Commentary: Saccadic eye movements: Overview of neural circuitry. Prog. Brain. Res. 140,89-96. |
|
[37] | Ostendorf, F., Liebermann, D. & Ploner, C.J. (2010). Human thalamus contributes to perceptual stability across eye movements. PNAS. 107, 1229-1234. |
|
[38] | Bichot1, N.P., Rossi, A. F. & Desimone, R. (2005). Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4, Science. 308, 529-534. |
|
[39] | Marr, D. (1982). Vision, Computational investigation into Human representation and processing of visual information. (San Francisco: W H Freeman and Company). |
|
[40] | Itti, L. (2005). Models of bottom-up attention and saliency In Neurobiology of Attention. (eds Itti,L., Rees, G. & Tsotsos.) 576-582 (Academic Press, Elsevier Inc., San Diego, CA.). |
|
[41] | Buschman, T. J. & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 1860-1862. |
|
[42] | Schall1, J. D., Paré, M. & Woodman, G. F. (2007). Comment on “Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices”. Science. 318, 44. |
|
[43] | Zou Qi., Zhao Songnian., Wang Zhe. & Huang Yaping. (2012). A neural computational model for bottom-up attention with invariant and overcomplete representation. BMC Neuroscience. 13, 1-22. |
|
[44] | Tamami Nakano., Makoto Kato., Yusuke Morito., Seishi Itoi. & Shigeru Kitazawa. (2013). Blink- related momentary activation of the default mode network while viewing videos. PNAS. 110, 2702-706. |
|
[45] | Bridgeman, B. & Palca, J. (1980). The role of microsaccades in high acuity observational tasks. Vision Res. 20, 813-817. |
|
[46] | Moore, T., Tolias, A.S. & Schiller, P.H. (1998). Visual representations during saccadic eye movements. PNAS. 95, 8981-8984. |
|
[47] | Moore, T. (1999). Shape Representations and Visual Guidance of Saccadic Eye Movements. Science. 285, 1914-1917. |
|
[48] | McFarland, J. M., Bondy, A.G., Cumming, B.G. & Butts, D. A. (2014). High-resolution eye tracking using V1 neuron activity. Nature Communications 5, 1-12. |
|
[49] | Higgins, E. & Rayner, K. (2015). Transsaccadic processing: stability, integration, and the potential role of remapping. Atten Percept Psychophys. 77, 3-27. |
|