[1] | Miller, E. K. (2000). The prefrontal cortex and cognitive control. Annual review of neuroscience, 1, 59-65. |
|
[2] | Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662. |
|
[3] | Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202. |
|
[4] | Comalli, P.E.Jr, Wapners, S., & Werener,H. (1962). Interference effects of Stroop color-word test in childhood, adulthood, and aging. The Journal of Genetic Psychology, 100, 47-53. |
|
[5] | Charchat-Fichman, H., & Oliveira, R. M. (2009). Performance of 119 Brazilian children on Stroop paradigm-Victoria version. Arquivos de Neuro-Psiquiatria, 67, 445-449. |
|
[6] | Gerstadt, C. L., Hong, Y. J., & Diamond, A. (1994). The relationship between cognition and action: performance of children 3 1/2-7 years old on a Stroop-like day-night test. Cognition, 53, 129-153. |
|
[7] | Montgomery, D.E., & Koeltzow, T.E. (2010). A review of the day-night task: The Stroop paradigm and interference control in young children. Developmental Review, 30, 308-330. |
|
[8] | Lagattuta, K. H., Sayfan, L., & Monsour, M. (2011). A new measure for assessing executive function across a wide age range: children and adults find happy-sad more difficult than day-night. Developmental Science, 14, 481-489. |
|
[9] | Adleman, N.E., Menon, V., Blasey, C.M., White, C.D., Warsofsky, I.S., Glover, G.H., et al. (2002). A developmental fMRI study of the Stroop color-word task. Neuroimage, 16, 61-75. |
|
[10] | MacDonald, A.W., Cohen, J.D., Stenger, V.A., & Carter, C.S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835-1838. |
|
[11] | Bench, C.J., Frith, C.D., Grasby, P.M., Friston, K.J., Paulesu, E., Frackowiak, R.S., et al. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31, 907-922. |
|
[12] | Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45, 1237-1258. |
|
[13] | Laird, A.R., McMillan, K.M., Lancaster, J.L., Kochunov, P., Turkeltaub, P.E., Pardo, J.V., et al. (2005). A comparison of label-based review and ALE meta-analysis in the stroop task. Human Brain Mapping, 25, 6-21. |
|
[14] | Taylor, S.F., Kornblum, S., Lauber, E.J., Minoshima, S., & Koeppe, R.A. (1997). Isolation of specific interference processing in the Stroop task: PET activation studies. Neuroimage, 6, 81-92. |
|
[15] | Aron, A.R., Robbins, T.W., & Poldrack, R.A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170-177. |
|
[16] | Ehlis, A.C., Herrmann, M.J., Wagener, A., & Fallgatter, A.J. (2005). Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent stroop trials. Biological Psychology, 69, 315-331. |
|
[17] | Hyodo, K., Dan, I., Suwabe, K., Kyutoku, Y., Yamada, Y., Akahori, M., et al. (2012). Acute moderate exercise enhances compensatory brain activation in older adults. Neurobiology of Aging, 33, 2621-2632. |
|
[18] | Léon-Carrion, J., Damas-López, J., Martín-Rodríguez, J. F., Domínguez-Roldán, J. M., Murillo-Cabezas F., Barroso Y Martin, J.M., et al. (2008). The hemodynamics of cognitive control: The level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified stroop task. Behavioural Brain Research, 193, 248-256. |
|
[19] | Schroeter, M.L., Zysset, S., Kruggel, F., & von Cramon, D.Y. (2003). Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. Neuroimage, 19, 555-564. |
|
[20] | Schroeter, M.L., Zysset, S., Wahl, M., & von Cramon, D.Y. (2004). Prefrontal activation due to stroop interference increases during development-an event-related fNIRS study. Neuroimage, 23, 1317-1325. |
|
[21] | Taniguchi, K., Sumitani, S., Watanabe, Y., Akiyama, M., & Ohmori, T. (2012). Multi-channel near-infrared spectroscopy reveals reduced prefrontal activation in schizophrenia patients during performance of the kana Stroop task. The journal of medical investigation, 59, 45-52. |
|
[22] | Koizumi, H., Yamamoto, T., Maki, A., Yamashita, Y., Sato, H., Kawaguchi, H., et al. (2003). Optical topography: practical problems and new applications. Applied Optics, 42, 3054-3062. |
|
[23] | Matsuoka, K., Masatake, U., Kasai, K., Koyama, K., & Kim, Y. (2006). Estimation of premorbid IQ in individuals with Alzheimer’s disease using Japanese ideographic script (Kanji) compound words: Japanese version of National Adult Reading Test. Psychiatry and Clinical Neurosciences, 60, 332-339. |
|
[24] | Suda, M., Fukuda, M., Sato, T., Iwata, S., Song, M., Kameyama, M., et al. (2009). Subjective feeling of psychological fatigue is related to decreased reactivity in ventrolateral prefrontal cortex. Brain Research, 1252, 152-160. |
|
[25] | Cadenhead, K.S., Perry, W., Shafer, K., & Braff, D.L. (1999). Cognitive functions in schizotypal personality disorder. Schizophrenia Research, 37, 123-132. |
|
[26] | Kim, M-S., Oh, S.H., Jang, K.M., Che, H., & Im, C-H. (2011). Electrophysiological correlates of cognitive inhibition in college students with schizotypal traits. Open Journal of Psychiatry, 2, 68-76. |
|
[27] | Ito, S., Ohbe, S., Ohta, M., Takao, T., & Sakamoto, S. (2008). The reliability and validity of the Japanese version of Schizotypal Personality Questionnaire Brief. Japanese Bulletin of Social Psychiatry, 17, 168-176. (In Japanese) |
|
[28] | Baumgartner, T., Esslen, M., Jäncke, L. (2006). From emotion perception to emotion experience: emotions evoked by pictures and classical music. International Journal of Psychophysiology, 60, 34-43. |
|
[29] | Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D.Y. (2005). Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Human Brain Mapping, 25, 22-34. |
|
[30] | Floden, D., Vallesi, A., & Stuss, D.T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23, 867-879. |
|
[31] | Kemmotsu, N., Villalobos, M.E, Gaffrey, M.S., Courchesne, E., & Müller R.A. (2005). Activity and functional connectivity of inferior frontal cortex associated with response conflict. Cognitive Brain Research, 24, 335-342. |
|
[32] | Chong, T.T., Williams, M.A., Cunnington, R., & Mattingley, J.B. (2008). Selective attention modulates inferior frontal gyrus activity during action observation. Neuroimage, 40, 298-307. |
|
[33] | Keuken, M.C., Hardie, A., Dorn, B.T., Dev, S., Paulus, M.P., Jonas, K.J., et al. (2011). The role of the left inferior frontal gyrus in social perception: an rTMS study. Brain research, 1383, 196-205. |
|
[34] | Pobric, G., & Hamilton, A. F. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16, 524-529. |
|
[35] | Sprengelmeyer, R., Rausch, M., Eysel, U.T., & Przuntek, H. (1998). Neural structures associated with recognition of facial expressions of basic emotions. Proceedings of Royal Society of London. Series B. Biological Sciences, 265, 1927-1931. |
|
[36] | Herrmann, M.J., Ehlis, A.C., & Fallgatter, A.J. (2003). Prefrontal activation through task requirements of emotional induction measured with NIRS. Biological Psychology, 64, 255-263. |
|
[37] | Ochsner, K.N, Ray, R.R., Hughes, B., McRae, K., Cooper, J.C., Weber, J., et al. (2009). Bottom-up and top-down processes in emotion generation: common and distinct neural mechanisms. Psychological Science, 20, 1322-1331. |
|
[38] | Gross, J.J. (2002). Emotion regulation: affective, cognitive and social consequences. Psychophysiology, 39, 281-291. |
|
[39] | Gilbert, S.J., Spengler, S., Simons, J.S., Steele, J.D., Lawrie, S.M., Frith, C.D., et al. (2006). Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. Journal of Cognitive Neuroscience, 18, 932-948. |
|
[40] | Ohira, H., Nomura, M., Ichikawa, N., Isowa, T., Iidaka, T., Sato, A., et al. (2006). Association of neural and physiological responses during voluntary emotion suppression. Neuroimage, 29, 721-733. |
|
[41] | Kobayashi, N., Yoshino, A., Takahashi, Y., & Nomura, S. (2007). Autonomic arousal in cognitive conflict resolution. Autonomic neuroscience, 132, 70-75. |
|
[42] | Nagai, Y., Critchley, H.D., Featherstone, E., Trimble, M R., & Dolan, R.J. (2004). Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function. Neuroimage, 22, 243-251. |
|
[43] | Raine, A., Reynolds, G. P., & Sheard, C. (1991). Neuroanatomical correlates of skin conductance orienting in normal humans: a magnetic resonance imaging study. Psychophysiology, 28, 548-558. |
|
[44] | Tranel, D., & Damasio, H. (1994). Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology, 31, 427-438. |
|
[45] | Fukui, Y., Ajichi, Y., & Okada, E. (2003). Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Applied Optics, 42, 2881-2887. |
|
[46] | Ovaysikia, S., Tahir, K.A., Chan, J.L., & DeSouza, J F. (2011). Word wins over face: emotional Stroop effect activates the frontal cortical network. Frontiers in Human Neuroscience, 4, Article 234. |
|