Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: https://www.sciepub.com/journal/jpbpc Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Go
Journal of Polymer and Biopolymer Physics Chemistry. 2013, 1(1), 13-21
DOI: 10.12691/jpbpc-1-1-3
Open AccessReview Article

Dextrans in Aqueous Solution. Experimental Review on Intrinsic Viscosity Measurements and Temperature Effect

Martin Alberto Masuelli1, 2,

1Instituto de Física Aplicada, CONICET. Cátedra de Química Física II, Área de Química Física

2Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina

Pub. Date: November 22, 2013

Cite this paper:
Martin Alberto Masuelli. Dextrans in Aqueous Solution. Experimental Review on Intrinsic Viscosity Measurements and Temperature Effect. Journal of Polymer and Biopolymer Physics Chemistry. 2013; 1(1):13-21. doi: 10.12691/jpbpc-1-1-3

Abstract

The study of biopolymers as dextran in aqueous solution, is effectively determined by intrinsic viscosity [η] measurements at different temperatures. Molecular weight (Mv) and hydrodynamic properties can be calculated from there. The Mark-Houwink parameters indicate the dependence with temperature (T) in the range from 20 to 50ºC, ie with increasing T a increases and kM-H decreases. These hydrodynamic parameters show that these polysaccharides behave as a compact rigid sphere and contract by the increase of temperature (RH decreases) for the Mw range from 8.8 to 200kDa.

Keywords:
intrinsic viscosity dextrans Mark-Houwink parameters hydrodynamic temperature

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Ioan, C.E.; Aberle, T; Burchard, W. (2000). Structure Properties of Dextran. 2. Dilute Solution. Macromolecules, 33, 5730-5739.
 
[2]  Kim, D.; Robyt, J. F.; So-Young Lee; Jin-Ha Lee; Young-Min Kim. (2003). Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydrate Research, 338, 1183-1189.
 
[3]  De Belder, A.N. (2003). Dextran. Amersham Biosciences, AA Edition, www.amershambiosciences.com.
 
[4]  De Belder, A. N. (2001). Dextran Fractions. Data File Dextran. Amersham Biosciences, AA Edition, www.amershambiosciences.com.
 
[5]  Castellanos Gil, E. E.; Iraizoz Colarte, A.; El Ghzaoui, A.; Durand, D.; Delarbre, J.L.; Bataille, B. (2008). A sugar cane native dextran as an innovative functional excipient for the development of pharmaceutical tablets. European Journal of Pharmaceutics and Biopharmaceutics, 68, 319-329.
 
[6]  Jeanes, A.; Haynes, W.C.; C. Wilham, A.; Rankin, J.C; Melvin, E.H.; Austin, M. J.; Cluskey, J. E.; Fisher, B.E.; Tsuchiya, H.M.; Rist, C.E. (1954). Characterization and Classification of Dextrans from Ninety-six Strains of Bacteria. Journal of American Chemical Society, 76 (20), 5041-5052.
 
[7]  Arond L.H.; Fran, H.P. (1954). Molecular weight, molecular weight distribution and molecular size of a native dextran. Journal of Physical Chemistry, 58(11), 953-957.
 
[8]  Armstrong, J. K.; Wenby, R. B.; Meiselman, H. J.; Fisher, T. C. (2004). The Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell Aggregation. Biophysical Journal, 87, 4259-4270.
 
[9]  Pribush, A.; Zilberman-Kravits, D.; Meyerstein, N. (2007). The mechanism of the dextran-induced red blood cell Aggregation. European Biophysical Journal, 36, 85-94.
 
[10]  Barshtein, G.; Tamir, I.; Yedgar, S. (1998). Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation. European. Biophysical Journal, 27, 177-181.
 
[11]  Stenekes, R.J.H.; Talsma, H.; Hennink, W.E. (2001). Formation of dextran hydrogels by crystallization. Biomaterials, 22, 1891-1898.
 
[12]  Liu Zonghua; Yanpeng Jiao; Yifei Wang; Changren Zhou; Ziyong Zhang (2008). Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews, 60, 1650-1662.
 
[13]  Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30, 38-70.
 
[14]  Pavlov, G.M.; Grishchenko, A.E.; Rjumtsev, E.I.; Yevlampieva N.P. (1999). Optical properties of dextran in solution and in films. Carbohydrate Polymers, 38, 267-271.
 
[15]  Leiva, Angel; Muñoz, Natalia; Urzúa, Marcela; Gargallo, Ligia; Radic, Deodato (2010). Monolayers and Thin Films of Dextran Hydrophobically Modified. J. Braz. Chem. Soc., 21, 1, 78-86.
 
[16]  Rotureau, E.; Dellacherie, E.; Durand, A. (2006). Viscosity of aqueous solutions of polysaccharides and hydrophobically modified polysaccharides: Application of Fedors equation. European Polymer Journal, 42, 1086-1092.
 
[17]  Viet, D.; Beck-Candanedo, S.; Gray D. G. (2008). Synthesis and characterization of blue dextrans. Carbohydrate Polymers, 74, 372-378.
 
[18]  Hennink, W.E.; De Jong, S.J.; Bos, G.W.; Veldhuis, T.F.J.; van Nostrum, C.F. (2004). Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. International Journal of Pharmaceutics, 277, 99-104.
 
[19]  Coviello, T.; Matricardi, P.; Marianecci, C.; Alhaique, F. (2007). Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release, 119, 5-24.
 
[20]  Kloster, C.; Bica, C.; Lartigue, C.; Rochas, C.; Samios, D.; Geissler E. (1998). Dynamics of a Polymer Solution in a Rigid Matriz. Macromolecules, 31, 7712-7716.
 
[21]  Kloster, C.; Bica C.; Rochas C.; Samios, D.; Geissler, E. (2000). Dynamics of a Polymer Solution in a Rigid Matrix. 2. Macromolecules, 33, 6372-6377.
 
[22]  Nordmeier, Eckliard (1993). Static and Dynamic Light-Scattering Solution Behavior of Pullulan and Dextran in Comparison. Journal of Physical Chemistry, 97, 5110-5185.
 
[23]  Karmarkar, S.; Garber, R.: Kluza, J.; Koberda, M. (2006). Gel permeation chromatography of dextrans in parenteral solutions: Calibration procedure development and method validation. Journal of Pharmaceutical and Biomedical Analysis, 41, 1260-1267.
 
[24]  Harding, Stephen E. (2005). Challenges for the modern analytical ultracentrifuge analysis of polysaccharides. Carbohydrate Research, 340, 811-826.
 
[25]  Kirkland, J. J.; Dilks, C. H.; Rementer, S. W. (1992). Molecular Weight Distributions of Water-Soluble Polymers by Flow Field-Flow Fractionation. Analytical Chemistry, 64, 1295-1303.
 
[26]  Antoniou, E.; Buitrago, C. F.; Tsianou, M.; Alexandridis, P. (2010). Solvent effects on polysaccharide conformation. Carbohydrate Polymers, 79, 380-390.
 
[27]  Senti, F. R.; Hellman, N. N.; Ludwig, G.; Babcock, E.; Tobin, R.; Class, C. A., (1955). Viscosity, sedimentation, and light-scattering properties of fraction of an acidhydrolyzed dextran. Journal of Polymer Science, 17, 527-546.
 
[28]  Granath, K. A. (1958). Solution properties of branched dextran. Journal of Colloid Science, 31, 308-328.
 
[29]  Gekko, K. (1971). Physicochemical studies of oligodextran. II. Intrinsic viscosity molecular weight relationship. Die Makromolekulare Chemie, 148(1), 229-238.
 
[30]  Bose, A.; Rollings, J. E.; Caruthers, J. M.; Okos, M. R.; Tsao, T. G. (1982). Polyelectrolytes as secondary calibration standards for aqueous SEC. Journal of Applied Polymer Science, 27, 795-810.
 
[31]  Bahary, W.S.; Hogan, M.P. Determination of branching in biopolymers by size exclusion chromatography with light scattering (Malls), viscosity, and refractive index detection. Int. GPC Symp. Proc. 1994, 95-0355.
 
[32]  Bahary, W. S.; Hogan, M. P.; Jilani, M.; Aronson, M. P. (1995). Chromatographic characterization of polymers: Hyphenated and multidimensional techniques. Advances in chemistry series Washington, DC: American Chemical Society., pp. 151-166.
 
[33]  Eremeeva, T. E.; Bykova, T. O. (1998). SEC of mono-carboxymethyl cellulose (CMC) in a wide range of pH, Mark–Houwink constants. Carbohydrate Polymers, 36, 319-326.
 
[34]  Guner, Ali (1999). Unperturbed dimensions and theta temperature of dextran in aqueous solutions. Journal of Applied Polymer Science, 72, 871-876.
 
[35]  Catiker, E.; Guner, A. (2000). Unperturbed dimensions and the theta temperature of dextran in ethylene glycol solutions. European Polymer Journal, 36, 2143-2146.
 
[36]  Guner, A.; Kibarer, G. (2001). The important role of thermodynamic interaction parameter in the determination of theta temperature, dextran/water system. European Polymer Journal, 37, 619-622.
 
[37]  Tirtaatmadja, V.; Dunstan, D. E.; Boger, D. V. (2001). Rheology of dextran solutions. Journal Non-Newtonian Fluid Mech., 97, 295-301.
 
[38]  Durand, A. (2007). Aqueous solutions of amphiphilic polysaccharides: Concentration and temperature effect on viscosity. European Polymer Journal, 43, 1744-1753.
 
[39]  Kasaai, Mohammad R. (2012). Dilute solution properties and degree of chain branching for dextran. Carbohydrate Polymers 88 373-381.
 
[40]  López Martínez, M. C.; Díaz Baños, F. G.; Ortega Retuerta, A.; García de , J. (2003). Multiple Linear Least-Squares Fits with a Common Intercept: Determination of the Intrinsic Viscosity of Macromolecules in Solution. Journal of Chemical Education, 80(9), 1036-1038.
 
[41]  Huggins, Maurice L. (1942). The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. Journal of American Chemical Society, 64(11), 2716-2718.
 
[42]  Curvale, R.; Masuelli, M.; Perez Padilla, A. (2008). Intrinsic viscosity of bovine serum albumin conformers. International Journal of Biological Macromolecules, 42, 133-137.
 
[43]  Masuelli, Martin Alberto (2013). Advances in Physical Chemistry, Vol. 2013, Article ID 360239, pp. 8.
 
[44]  Solomon, O. F. ; Ciutǎ I. Z. (1962). Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. Journal of Applied Polymer Science, 6, 683-686.
 
[45]  Gillespie, T.; Hulme, M. A. (1969). On single point determination of intrinsic viscosity. Journal of Applied Polymer Science, 13, 2031-2032.
 
[46]  Takara, Andres; Acosta, Adolfo; Masuelli, Martin A. (2013). Hydrodynamic Properties of Tragacanthin. Study of temperature influence. Journal Argentine Chemical Society 100 (2013) 25-34.
 
[47]  Harding, Stephen E. (1997). The Intrinsic Viscosity of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Progress in Biophysical Molecules Biological, 68, 207-262.
 
[48]  Harding, S. E.; Varum, K.; Stoke B.; Smidsrod, O. (1991). Molecular weight determination of polysaccharides. Advances in Carbohydrate Analysis, 1, 63-144.
 
[49]  Smith, David R.; Raymonda, John W. (1972). Polymer molecular weight distribution. An undergraduate physical chemistry experiment. Journal of Chemical Education, 49(8), 577-579.
 
[50]  He, L.; Niemeyer, B. (2003). A novel correlation for protein diffusion coefficients based on molecular weight on radius of gyration. Biotechnology Progress, 19, 544-548.
 
[51]  Ortega, A.; García de la Torre, J. (2007). Equivalent Radii and Ratios of Radii from Solution Properties as Indicators of Macromolecular Conformation, Shape, and Flexibility. Biomacromolecules 8, 2464-2475.
 
[52]  Garcia de la Torre, J.; Carrasco, B. (1999). Universal size-independent quantities for the conformational characterization of rigid and flexible macromolecules. Progr. Colloid Polym. Sci. 113, 81-86.
 
[53]  Bohdanecky, Miloslav (1996). Mark-Houwink-Kuhn-Sakurada Exponent at the Θ Condition. Its Invariancy with Respect to the Cross-Sectional Dimensions of Polymer Chains. Macromolecules, 29, 2265-2268.
 
[54]  Morris, G.A.; Patel, T.R.; Picout, D.R.; Ross-Murphy, S.B.; Ortega, A.; Garcia de la Torre, J.; Harding, S.E. (2008). Global hydrodynamic analysis of the molecular flexibility of galactomannans. Carbohydrate Polymers 72, 356-360.
 
[55]  Palmuti Braga Vettoria, Mary Helen; Martins Franchetti, Sandra Mara; Contiero, Jonas (2012). Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohydrate Polymers 88 1440-1444.
 
[56]  Harding, S. E., & Simpkin, N. J. (1990). On the molecular weight distribution of dextran T-500. Gums and stabilisers for the Food Industry, 5, 447-450.
 
[57]  Ubbelohde, Leo. (1937). The Principle of the Suspended Level: Applications to the Measurement of Viscosity and Other Properties of Liquids. Ind. Eng. Chem. Anal. Ed., 9(2), 85-90.
 
[58]  Viswanath, D.S.; Prasad, D.H.L.; Dutt, N.V.K.; Rani, K.Y.; Ghosh, T.K. (2007). Viscosity of Liquids. Theory, Estimation, Experiment, and Data. Chapter 2.1.4 Suspended level viscometers for transparent liquid, Ubbelohde Viscometer page 28-31. Springer Editions.
 
[59]  Pamiés, R.; Hernández Cifre, J. G.; López Martínez, M.C.; García de , J. (2008). Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid and Polymer Science, 286, 1223-1231.
 
[60]  Elias, Hans-Georg (1975). Polymolecularity and polydispersity in Molecular weight determinations. Pure Appl. Chem. 43-1, 115-147.
 
[61]  Kasaai, M. R.; Arul, J.; Charlet, G. (2000). Intrinsic viscosity-molecular weight relationship for chitosan. Journal of Polymer Science Part B: Polymer Physics, 38, 2591-2598.
 
[62]  Kasaai, Mohammad R. (2007). Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperatura system using experimental reported viscometric constants data. Carbohydrate Polymers, 68, 477-488.
 
[63]  Cecopieri-Gómez, Martha L.; Palacios-Alquisira, Joaquín (2005). Interaction Parameter (χ); Expansion Factor (ε); Steric Hindrance Factor (σ); and Shielding Function F(ξ); for the System PEA–Organic Solvents by Intrinsic Viscosity Measurements. J. Braz. Chem. Soc., 16, 3A, 426-433.
 
[64]  Ghimici, Luminita; Nichifor, Marieta; Wolf, Bernhard (2009). Ionic Polymers Based on Dextran: Hydrodynamic Properties in Aqueous Solution and Solvent Mixtures. J. Phys. Chem. B 113, 8020-8025.
 
[65]  Ghimici, Luminita; Nichifora, Marieta; Eich, Andreas; Wolf, Bernhard A. (2012). Intrinsic viscosities of polyelectrolytes in the absence and in the presence of extra salt: Consequences of the stepwise conversion of dextran into a polycation. Carbohydrate Polymers 87, 405-410.
 
[66]  Covis, Rudy; Ladaviere, Catherine ; Desbrieres, Jacques ; Marie, Emmanuelle ; Durand, Alain. (2013). Synthesis of water-soluble and water-insoluble amphiphilic derivatives of dextran in organic medium. Carbohydrate Polymers 95 360-365.
 
[67]  Mainaa, Ndegwa Henry; Pitkänen, Leena; Heikkinen, Sami; Tuomainen; Päivi; Virkki, Liisa; Tenkanen, Maija (2014). Challenges in analysis of high-molar mass dextrans: Comparison of HPSEC, AsFlFFF and DOSY NMR spectroscopy. Carbohydrate Polymers 99, 199-207.
 
[68]  Beer, M.U.; Wood, P.J.; Weisz, J. (1999). A simple and rapid method for evaluation of Mark–Houwink–Saturada constants of linear random coil polysaccharides using molecular weight and intrinsic viscosity determined by high performance size exclusión chromatography: application to guar galactomannan. Carbohydrate Polymers, 39, 377-380.
 
[69]  Walkenhorst, S.; Olivier, R. (2002). Determination of polymer structure by Gel Permeation Chromatography. Materiaux 1-5. Viscotek GmbH, Europe.
 
[70]  Walkenhorst, S.; Olivier, R. (2003). Dextran Triple Detector Application Note 1, Viscotek GmbH, USA.
 
[71]  Chen Rong Huei; Wei Yu Chen; Shang Ta Wang; Chu Hsi Hsu; Min Lang Tsai (2009). Changes in the Mark-Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths. Carbohydrate Polymers, 78, 902-907.
 
[72]  Chen Rong Huei; Min Lang Tsai (1998). Effect of temperature on the intrinsic viscosity and conformation of chitosan in dilute HCl solution. International Journal of Biological Macromolecules, 23, 135-141.
 
[73]  Kuge Takashi; Kimie Kobayashi; Shinichi Kitamura; Hiroshi Tanahashi. (1987). Degrees of long-chain branching in dextrans. Carbohydrate Research, 160, 205-214.
 
[74]  Masuelli, Martin A. Hydrodynamic properties of whole arabic gum. American Journal of Food Science and Technology 2013, 1(3), 60-66.