[1] | Halliwell B (2007): Biochemistry of oxidative stress. Biochem Soc Trans; 35: 1147-50. |
|
[2] | Valko M, Leibfritz D, Moncol J, Cronin M, Mazur M et al. (2007): Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol; 39 (1): 44-84. |
|
[3] | Bahorun T, Soobrarree MA, Luximon-Ramma V, Aruoma OI (2006): Free radicals and antioxidants in cardiovascular health and disease. Internet J Med Update; 1: 1-17. |
|
[4] | Genestra M (2007): Oxyl radicals, redox-sensetive signaling cascades and antioxidants. Cell Signal; 19: 1807-1819. |
|
[5] | Miranda-Vilelaa AL, Portilhoa FA, de Araujoa V, Estevanatoa L, Mezzomoa B, Santosb M, Lacavaa Z (2011): The protective effects of nutritional antioxidant therapy on Ehrlich solid tumorbearing mice depend on the type of antioxidant therapy chosen: histology, genotoxicity and hematology evaluations. J Nutr Biochem; 22 (11): 1091-1098. |
|
[6] | Jomova K, Valko M (2011): Advances in metal-induced oxidative stress and human disease. Toxicol; 283 (2-3): 65-87. |
|
[7] | Duarte TL, Lunec J (2005): When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic Res; 39 (7): 671-86. |
|
[8] | Zelko I, Mariani T, Folz R (2002): Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med; 33 (3): 337-49. |
|
[9] | Johnson F, Giulivi C (2005): Superoxide dismutases and their impact upon human health. Mol Aspects Med 26 (4-5): 340-52. |
|
[10] | Nozik-Grayck E, Suliman H, Piantadosi C (2005): Extracellular superoxide dismutase. Int J Biochem Cell Biol; 37 (12): 2466-71. |
|
[11] | Berg JM, Tymoczko JL, Stryer L (2002): Biochemistry, 5th ed., Freeman WH and Co., New York; pp: 205-206. |
|
[12] | Kabel AM, Abdel-Rahman MN, El-Sisi Ael-D, Haleem MS, Ezzat NM, El Rashidy MA (2013): Eur J Pharmacol; 713 (1-3): 47-53. |
|
[13] | Ho YS, Xiong Y, Ma W, Spector A and Ho DS (2004): Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem; 279: 32804-32812. |
|
[14] | Yang H, Shi MJ, Van Remmen H, Chen XL, Vijg J et al. (2003): Reduction of pressor response to vasoconstrictor agents by overexpression of catalase in mice Am J Hypertens; 16 (1): 1-5. |
|
[15] | Nordberg J, Arner ES (2001): Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med; 31 (11): 1287-1312. |
|
[16] | Mustacich D, Powis G (2000): . Biochem J; 346(1): 1-8. |
|
[17] | Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi Y (2004): Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal; 6 (2): 289-300. |
|
[18] | Hayes J, Flanagan J, Jowsey I (2005): Glutathione transferases. Annu Rev Pharmacol Toxicol; 45: 51-88. |
|
[19] | Linster CL, Van Schaftingen E (2007): Vitamin C: Biosynthesis, recycling and degradation in mammals. FEBS J; 274 (1): 1-22. |
|
[20] | Ulusu NN, (2007): Purification and kinetic properties of glutathione reductase from bovine liver. ; 303(1-2): 45-51. |
|
[21] | Sen C, Khanna S, Roy S (2006): . Life Sci; 78 (18): 2088-2098. |
|