Journal of Mathematical Sciences and Applications
ISSN (Print): 2333-8784 ISSN (Online): 2333-8792 Website: http://www.sciepub.com/journal/jmsa Editor-in-chief: Prof. (Dr.) Vishwa Nath Maurya, Cenap ozel
Open Access
Journal Browser
Go
Journal of Mathematical Sciences and Applications. 2013, 1(2), 24-28
DOI: 10.12691/jmsa-1-2-2
Open AccessArticle

Modelling Relationship between NDVI and Climatic Variables Using Geographically Weighted Regression

U. Usman1, S. A. Yelwa2, , S.U. Gulumbe1 and A. Danbaba1

1Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria

2Department of Environmental Sciences, Federal University Dutse, Jigawa State, Nigeria

Pub. Date: August 10, 2013

Cite this paper:
U. Usman, S. A. Yelwa, S.U. Gulumbe and A. Danbaba. Modelling Relationship between NDVI and Climatic Variables Using Geographically Weighted Regression. Journal of Mathematical Sciences and Applications. 2013; 1(2):24-28. doi: 10.12691/jmsa-1-2-2

Abstract

Relationship between vegetation and its spatial predictors appears to vary as a function of geographical region and a number of the underlying environmental factors such as the type of vegetation, soil and land use. However, NDVI-climate relationship also varies within one landcover type because there are many cases that show a non-stability of this relationship in space within the same land cover or vegetation type. The purpose of this study is to investigate the applicability of Geographically Weighted Regression (GWR) with the objective of finding the spatial relationship between Normalized Difference Vegetation Index (NDVI) derived from NOAA/AVHRR and Aqua/ Moderate Resolution Imaging Spectroradiometer (AQUA/MODIS) as well as climatic variables (Rainfall, Temperature) data obtained from some weather stations across Northern Nigeria from 1980 - 2010.The results of this study show that there is significant relationship between the NDVI and climate variables (Rainfall, Tmax and Tmin). The study proved the superiority of the local approach provided by GWR over the global Ordinary Least Square (OLS) approach in analysing the relationship between patterns of NDVI and precipitation. This superiority however, was mainly due to spatial variation of the relationship over the local study area because global regression techniques like OLS tend to ignore local information and, therefore, indicate incorrectly that a large part of the variance in NDVI was unexplained. The non-stationary modelling based on the GWR approach therefore, has the potential for a more reliable prediction because the model is more aligned to local circumstances, although more time-series data is needed to allow a more reliable local fitting.

Keywords:
geographical weighted regression Ordinary Least Square Normalized Difference Vegetation Index rainfall temperature

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 1

References:

[1]  IGBP (1992). J. R. G. Townshend (Ed.), Improved global data for land applications. IGBP Global Change Report, vol. 20. Stockholm, Sweden: International Geosphere– Biosphere Programme.
 
[2]  Justice, C. O., Townshend, J. R. G., Holben, B. N., & Tucker, C. J. (1985). Analysis of the phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing, 6(8), 1271-1318.
 
[3]  Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 695-702.
 
[4]  Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., & Klooster, S. A. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4), 811-841.
 
[5]  Prince, S. D. (1991). A model of regional primary production for use with coarse-resolution satellite data. International Journal of Remote Sensing, 12(6), 1313-1330.
 
[6]  Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W., & Ohlen, D. O. (1994). Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5(5), 703-714.
 
[7]  Running, S. W., & Nemani, R. R. (1988). Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sensing of Environment, 24, 347-367.
 
[8]  Tucker, C. J., & Sellers, P. J. (1986). Satellite remote sensing of primary production. International Journal of Remote Sensing, 7(11), 1395-1416.
 
[9]  Tucker, C.J., Townshend, J.R.G., & Goff, T.E.,1985. African Land cover Classification using Satellite data. Science, 227, 369-375.
 
[10]  Malingreau, J.P., 1986. Global Vegetation Dynamics: Satellite observations over Asia.
 
[11]  Marsh, S.E., Walsh, J.H., Lee, C.T., Beck, L.R & Hutchison, C.F., 1992. Comparison of multi-temporal NOAA/AVHRR and SPOT-XS Satellite data for Mapping Land cover dynamics in West African Sahel. International Journal of Remote sensing, 13: 2997-3016.
 
[12]  Di, L., Rundquist, D.C & Han, L., 1994. Molelling Relationships between NDVI and Precipitation during Vegetation Growth Cycles. International Journal of Remote Sensing 15(10): 2121-2136.
 
[13]  John, G., Yuan D., Lunetta R.S &Elvidge C.D., 1998. A Change Detection experiment using Vegetation Indices. Photogrammetry Engineering Intepretation. New York: John Wiley.
 
[14]  Campbell, J. B., 1987. Introduction of Remote sensing. New York: the Guilford press.
 
[15]  Lillesand TM, Kiefer RW (2005). Remote Sensing and Image Interpretation, 4th ed, John Wiley, and sons, inc. USA. ISBN: 0471255157, London, UK.
 
[16]  Malo, A.R. & Nicholson S.E.,1990. A study of Rainfall dynamics in African Sahel using Normalized Difference Vegetation Index. Journal of Arid Environment 19:1-24.
 
[17]  Steffen W., and Tyson P., 2001, Global Change and the Earth System: A planet under Pressure.
 
[18]  Wang, J., Price, K. P. & P. M. Rich. (2001). Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. International Journal of Remote Sensing, 22: 3827-3844.
 
[19]  Yang, L., Wylie, B., Tieszen, L. L., & Reed, B. C., (1998). „An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. Northern and Central Great Plains. Remote Sensing of the Environment, 65: 25-37.
 
[20]  Pavel Propastin, Martin Kappas & Stefan Erasmi (2007). Application of Geographically Weighted Regression to Investigate the Impact of Scale on Prediction Uncertainty by Modelling Relationship between Vegetation and Climate. International Journal of Spatial Data Infrastructures Research, 2008, Vol. 3, 73-94.
 
[21]  Ji, L. & A. J. Peters. (2004). A Spatial Regression Procedure for Evaluating the Relationship between AVHRR-NDVI and Climate in the Northern Great Plains. International Journal of Remote Sensing, 25: 297-311.
 
[22]  Fotheringham, A. S., Charlton, M. E. & Brundson, C. (1996). The geography of parameter space: and investigation into spatial non-stationarity. International Journal of GIS, 10: 605-627.
 
[23]  Foody, G. M, (2003), Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI–precipitation relationship. Remote Sensing of Environment, 88: 283-293.
 
[24]  Foody, G. M. (2004). Spatial nonstationary and scale-dependancy in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and Biogeography, 13: 315-320.
 
[25]  Wang, Q., Ni, J. & J. Tenhunen. (2005). Application of a geographically weighted regression analysis to estimate net primary production of Chinese forest ecosystem. Global Ecology & Biogeography, 14: 379-393.
 
[26]  Propastin, P. & M. Kappas. (2008). Reducing uncertainty in modelling NDVI precipitation relationship: a comparative study using global and local regression techniques. GIScience and Remote Sensing, 45: 1-25.
 
[27]  Fotheringham, A. S., Brunsdon, C. and Charlton, M. (2002). Geographically weighted egression: the analysis of spatially varying relationships. Chichester, Willey.
 
[28]  Openshaw, S. (1984). The modifiable areal unit problem. CAT-MOG, 38. Geo Abstracts, Norwich.
 
[29]  Dye, D. G., & C. J. Tucker, (2003), Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophysical Research Letters, 30 (7): Art. No. 1405.
 
[30]  Vicente-Serrano, S. M., Grippa, M., Delbart, N., Toan, T. L., & L. Kergoat, (2006), Influence of seasonal pressure patterns on temporal variability of vegetation activity in central Siberia. International Journal of Climatology, 26: 303-321.
 
[31]  Nicholson, S. E. and T. J. Farrar, (1994). The influence of soil type on the relationships between NDVI, precipitation, and soil moisture in semiarid Botswana. I. NDVI response to precipitation. Remote Sensing of Environment, 50(2): 107-120.
 
[32]  Wang, J., P. M. Rich, & K. P. Price, (2003), Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 24(11): 2345-2364.
 
[33]  Nicholson, S. E., M. L. Davenport, and A. R. Malo, (1990). A comparison of the vegetation response to precipitation in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Climatic Change, 17(2- ): 209-241.