Journal of Embedded Systems
ISSN (Print): 2376-7987 ISSN (Online): 2376-7979 Website: https://www.sciepub.com/journal/jes Editor-in-chief: Naima kaabouch
Open Access
Journal Browser
Go
Journal of Embedded Systems. 2014, 2(1), 15-17
DOI: 10.12691/jes-2-1-3
Open AccessArticle

Design of Embedded Sing-around System for Ultrasonic Velocity Measurements in Liquids

S. J. Sharma1, , A. C. Balharpure1, A. S. Pande1, S. U. Dubey1, G. K. Singh2, V. M. Ghodki3 and S. Rajagopalan1

1Department of Electronics, RTM Nagpur University, Nagpur, India

2Department of Electronics, Anand Niketan College, Warora, India

3Department of Electronics, J. B. Science College, Wardha, India

Pub. Date: February 08, 2014

Cite this paper:
S. J. Sharma, A. C. Balharpure, A. S. Pande, S. U. Dubey, G. K. Singh, V. M. Ghodki and S. Rajagopalan. Design of Embedded Sing-around System for Ultrasonic Velocity Measurements in Liquids. Journal of Embedded Systems. 2014; 2(1):15-17. doi: 10.12691/jes-2-1-3

Abstract

Among the pulse techniques in ultrasonics, sing around technique is widely used for measurements of ultrasonic velocity in liquids and solids. It is simple, versatile and highly accurate for absolute and relative ultrasonic velocity measurements. In the present work, an embedded sing around system, at operating frequency of 2 MHz, is designed around PIC 18F4550 microcontroller. Pulser and receiver circuits have been designed using locally available electronic components. Necessary controls have been dumped or embedded as software in the microcontroller to add intelligence to the sing around system. The designed system is compact, stand-alone, reliable, accurate and portable with onboard display of the ultrasonic velocity of propagation in the sample under study. Ultrasonic velocity measurements have been carried out in standard liquids and found to be in well agreement with the values reported in the literature.

Keywords:
pulse method sing around technique embedded system PIC 18F4550 time of flight measurement ultrasonic velocity intelligent system

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Cedrone N. P, and Curran D. R., “Electronic Pulse Method for Measuring the Velocity of Sound in Liquids and Solids”, J. Acoust. Soc. Am. 26(6), 963-967 (1954).
 
[2]  Forgacs R. L., “Improvements in the Sing-Around Technique for Ultrasonic Velocity Measurements”, J. Acoust. Soc. Am. 32(12), 1697 (1960).
 
[3]  H. Asada., “Sing-around Type Ultrasonic Measurement Instrument”, United States Patent 3,710,621 (Jan. 16, 1973).
 
[4]  Herzfeld K. F., “Fifty Years of Physical Ultrasonics”, J. Acoust. Soc. Am., 39(5.1), 813-825 (1966).
 
[5]  Khimunin A. S., “Circuit Errors in Measurement of the Velocity of Sound in Liquids by means of a Sing-around Velocimeter”, Sov. Phy. Acoust., 14(1), 75-78 (1968).
 
[6]  Kononenko V. S. and Yakovlev V. F., “Precision method for measuring the velocity of ultrasound in liquid at 0.7 - 30 MHz”, Sov. Phys. Acoust, 15(1), 65-68 (1969).
 
[7]  D’Arrigo G., Marietti P., and Taraglia P., “A new form of the Sing-Around Technique for Ultra-Sonic Velocity Measurements”, Letts. al Nuovo Cimento, 1(4), 105-114 (1970).
 
[8]  Lacy L. L. and Daniel A. C., “Measurements of Ultrasonic Velocities using a Digital Averaging Technique”, J. Acoust. Soc. Am.,52(1.2), 189-195 (1972).
 
[9]  Srinivasan K. R., Krishnan S., Shivaraman A., Nagarajan N., Ramakrishnan J. and Gopal E. S. R., “A Versatile Ultrasonic Pulse Echo Interferometer for Precise Velocity Measurement in Solids”, Symposium on Transducer Technology, Cochin (India), 283-288 (1975).
 
[10]  North M. A., Pethrick R. A. and Phillips W. D., “Ultrasonic studies of solid poly(alkyl methacrylates)”, Polym., 18, 324-326 (1977).
 
[11]  Sunnapwar K. P., Soitkar V. S., Dutt R. S. and Navaneeth G. N., “Automated Pulse Repetition Time Measurements in a Sing-around system in Ultrasonics”, Acoust. Letts, 4(6), 104-109 (1980).
 
[12]  Yogurtcu Y. K., Lambson E. F., Miller A. J. and Saunders G.A., “An Apparatus for High Precision Measurements of Ultrasonic Wave Velocity”, Ultrason., 155-159 (1981).
 
[13]  Soitkar V. S., Sunnapwar K. P. and Navaneeth G. N., “A Solid State Pulsed Sing-Around System for Ultrasonic Velocity Measurements”, J. of Pure & Appl. Phys., 19, 555-559 (1981).
 
[14]  Adachi K., Harrison G., Lamb J., North M. A., Pethrick A. R., “High Frequency Ultrasonic Studies of Polyethylene”, Polym., 22, 1032-1039 (1981).
 
[15]  Rajagopalan S., “Ultrasonic Velocity Measurement for High Accuracy”, CSIO Communication, 9(4), 131-136 (1982).
 
[16]  Woodward B. and Salman N. A., “A Programmable Ultrasonic Velocimeter”, Acoust. Letts, 6(8), 110-114 (1983).
 
[17]  Agnihotri P. K., Adgaonkar C. S. and Bedare C. Y., “A Low Cost Solid Pulsed System for Ultrasonic Velocity and Absorption Measurement”, Arch. of Acoust., 12(3-4), 301-310 (1987).
 
[18]  Adgaonkar C. S. and Agnihotri P. K., “A Low Cost Solid State Sender-receiver System for Ultrasonic Velocity Measurement”, Res. & Ind. 33, 139-143 (1988).
 
[19]  Tiwari S. A., Rajagopalan S. and Amirtha V., “A Frequency Selectable Sing-around System for Measurement of Ultrasonic Velocity”, Acoust. Letts, 14(7), 135-140 (1991).
 
[20]  Ernst S., Marczak W., Manikowski R., Zorebski E. and Zorebski M., “A Sing-around Apparatus for Group Velocity Measurement in Liquids. Testing by Standard Liquids and Discussion of the Errors”, Acoust. Letts, 15(7), 123-130 (1992).
 
[21]  Yawale S. P. and Pakade S. V., “Solid State Variable Frequency Pulser-receiver System for Ultrasonic Measurements”, J. of Pure & Appl. Phy., 33, 638-642 ( 1995).
 
[22]  Nakmura K., Okado T. and Ueha S.. “Measuring the Optical Length of a Plastic Optical Fibre using the Sing-around Method and its Sensor Applications”, J. Opt. A.: Pure & Appl. Opt. 3(5), L17-L19 (2001).
 
[23]  Ghodki V. M., “Development of PC based Technique for Acoustic Measurements”, Ph. D. Thesis, RTM Nagpur University, March 2005.
 
[24]  Dubey P. K., “Design and Study of Instrumentation for Ultrasonic Characterisation of Polymers”, Ph. D. Thesis, RTM Nagpur University, October 2006.
 
[25]  Pendsey V. M., “Development of PC based Pulse Technique for Ultrasonic Measurements”, Ph. D. Thesis, RTM Nagpur University, October 2011.
 
[26]  Kalyana Raman S. B., Arjav and Jayakumari T., “PC based Ultrasonic Instrumentation for Liquids”, J. Instrum. Soc. Ind. 37(2), 150-156 (2007).
 
[27]  Rajagopalan S., Sharma S. J. and Ghodki V. M., “PC based Design of Single Pulse Sender/receiver Technique for Ultrasonic Velocity Measurements”, J. Pure & Appl. Ultason. 29, 143-145 (2007).
 
[28]  Rajagopalan S., Sharma S. J. and Ghodki V. M., “Design of PC based Sing-around System”, J. Instrum. Soc. Ind. 37(4), 206-211 (2007).
 
[29]  Rajagopalan S., Sharma S. J. and Ghodki V. M., “Design of Virtual Sing-around System for Precise Ultrasonic Velocity Measurements”, Elect. J. Tech. Acoust. 5, (2010).
 
[30]  Singh G. K., Pendsey V. M., Sharma S. J. and Rajagopalan S., “Ultrasonic Velocity Measurements using GSM Network”, J. Instrum. Soc. Ind. 39(4), 258-259 (2009).
 
[31]  Singh G. K., Pendsey V. M., Sharma S. J. and Rajagopalan S., “Measurement of Ultrasonic Velocity in Liquids Using Wireless Technology: SMS”, ISOR J. Appl. Phys. 1(3), 20-22 (2012).
 
[32]  Singh G. K., Pendsey V. M., Sharma S. J. and Rajagopalan S., “Remote Monitoring of Pulser-receiver Setup for Ultrasonic Velocity Measurements using Email”, J. Instrum. Soc. Ind. 42(3), 172-174 (2012).
 
[33]  Singh G. K., “Control of Virtual Instrument using Wireless Technology”, Ph.D. Thesis, RTM Nagpur University, September 2012.
 
[34]  Gupta S. and John J., “Virtual Instrumentation Using Lab VIEW”, Tata McGraw-Hill Publishing Ltd, New Delhi (2005).
 
[35]  Grosso D. A. V. and Mader W. C., “Speed of Sound in Pure Water”, J. Acoust. Soc. Am. 52(5.2), 1942-1946 (1972).