Journal of Environment Pollution and Human Health
ISSN (Print): 2334-3397 ISSN (Online): 2334-3494 Website: https://www.sciepub.com/journal/jephh Editor-in-chief: Dibyendu Banerjee
Open Access
Journal Browser
Go
Journal of Environment Pollution and Human Health. 2022, 10(2), 58-70
DOI: 10.12691/jephh-10-2-4
Open AccessArticle

Dynamic Adsorption on Fixed-Bed Column of Manganese Oxoanions (MnO4-) in Aqueous Media on Activated Carbon Prepared from Palm Nut Shells

Charly Mve Mfoumou1, , Pradel Tonda-Mikiela1, Francis Ngoye1, Mbouiti Berthy Lionel1, 2, Bouassa Mougnala Spenseur1, 2, Alexander Sachse3, Samuel Mignard3 and Guy Raymond Feuya Tchouya1,

1Laboratoire de Chimie des Milieux et des Matériaux Inorganiques (LC2MI), URCHI / Université des Sciences et Techniques de Masuku (USTM), BP : 943 Franceville-Gabon.

2Département de Chimie, Faculté des Sciences / Université des Sciences et Techniques de Masuku (USTM), BP : 943 Franceville-Gabon

3Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR 7285 CNRS/Université de Poitiers, 4 Rue Michel Brunet, 86022 Poitiers Cedex, France

Pub. Date: December 04, 2022

Cite this paper:
Charly Mve Mfoumou, Pradel Tonda-Mikiela, Francis Ngoye, Mbouiti Berthy Lionel, Bouassa Mougnala Spenseur, Alexander Sachse, Samuel Mignard and Guy Raymond Feuya Tchouya. Dynamic Adsorption on Fixed-Bed Column of Manganese Oxoanions (MnO4-) in Aqueous Media on Activated Carbon Prepared from Palm Nut Shells. Journal of Environment Pollution and Human Health. 2022; 10(2):58-70. doi: 10.12691/jephh-10-2-4

Abstract

The study of the influence of operating parameters of dynamic adsorption on fixed-bed column of manganese oxoanions (MnO4-) in aqueous media on granular activated carbon (GAC), prepared from the shells palm nuts of Gabon, was carried out. The operating parameters studied were the particle size, the concentration of the initial solution (C0) of MnO4-, the flow rate (D) and the pH of the media. The results obtained on the study of the influence of operating parameters show that the best adsorption capacities at saturation (Qsat) of MnO4- ion on the CAG were obtained with particle size between 0.04 < x < 0.1 (5.90 mg.g-1); with flow rate of 3 mL.min-1 (8.36 mg.g-1) and when the pH of the initial solution was equal to 3.5 (27.01 mg.g-1). Also, these results showed that the bed of prepared GAC appeared more effective when C0 was low (10 mg.L-1). The kinetic models of the different studies carried out show that the pseudo-first-order kinetic model best describes the adsorption of MnO4- ions on the GAC. The results of the intraparticle diffusion model indicate that the adsorption of MnO4- follows a multi-step process and that the intraparticle diffusion is not the limiting step. In addition, the surface adsorption plays a predominant role in the adsorption mechanism of MnO4- ions on activated carbon studied in fixed-bed column dynamics.

Keywords:
Manganese Oxoanion () activated carbon dynamic adsorption breakthrough curve kinetic models

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 9

References:

[1]  Eric FOTO, Oscar ALLAHDIN, Olga BITEMAN, Nicole POUMAYE, and Seraphin PINIKO, “Assessment of Water Contamination by Metallic Trace Elements at Mining Sites: The Case of the Ouham River in the Central African Republic.” American Journal of Environmental Protection, vol. 10, no. 2 (2022): 47-56.
 
[2]  Messi Me Ndong, A.N., Bouraima, A., Bissielou, C., Anguile, J.J. and Makani, T. (2021) Chemical Composition Assessment by Wavelength Dispersive X-Ray Fluorescence of Agricultural Soils in the Mining Town of Moanda, Gabon. Journal of Agricultural Chemistry and Environment, 10, 345-358.
 
[3]  République Gabonaise, Direction Générale du Trésor, Ministère de l’Economie, des Finances et de la Relance (2021).
 
[4]  Koumba, C. (2014) La gestion et l’exploitation des ressources naturelles au Gabon: vers une réorganisation spatiale des activités productives. Les Cahiers d’Outre-Mer, p 256.
 
[5]  Jinbei Yang, Meiqiong Yu, Wentao Chen, Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics, Journal of Industrial and Engineering Chemistry, Volume 21(2015), Pages 414-422.
 
[6]  Oladoja N A, Unouabonah E L. Progress And Prospect In The Management Of Oxyanions Polluted Aqua Systems. Environmental Contamination Remediation and Management (2021).
 
[7]  Mbaye G. (2009). Synthèse et étude des charbons actifs pour le traitement des eaux usées d’une tannerie, Mémoire de Master, Institut Internationale d’Energie de l’Eau et de l’Environnement de Ouagadougou.
 
[8]  Weidner E, Ciesielczyk F. Removal of hazardous oxyanions from the environment using metal-oxide-based. Materials. 2019. 12(6): p. 927.
 
[9]  Water. Edition of the drinking water standards and health advisories. 2012.
 
[10]  Anyiam Ngozi Donald, Pene Barikuma Raphael, Oluwole James Olumide, and Okoro Felicitas Amarachukwu, “Environmental Heavy Metal Pollution: Physicochemical Remediation Strategies to the Rescue.” Journal of Environment Pollution and Human Health, vol. 10, no. 2 (2022).
 
[11]  Athéba, G.P., N’guadi, B.A., Dongui, B.K., Kra, D.O., Gbassi, K.G. and Trokourey, A. (2015) Adsorption du Butyllparabène sur du Charbon Activé à base des Coques de Coco Provenant de Cote d’Ivoire. International Journal of Innovation and Scientific Research, 13, 530-541.
 
[12]  Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of environmental management. 2011 Mar 1; 92(3): 407-18.
 
[13]  Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF. Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry. 2019 Aug 25; 76: 17-38.
 
[14]  Barakat MA. New trends in removing heavy metals from industrial wastewater. Arabian journal of chemistry. 2011 Oct 1; 4(4): 361-77.
 
[15]  Jin W, Du H, Zheng S, Zhang Y. Electrochemical processes for the environmental remediation of toxic Cr (VI): A review. Electrochimica Acta. 2016 Feb 10; 191: 1044-55.
 
[16]  Rathnayake SI, Martens WN, Xi Y, Frost RL, Ayoko GA. Remediation of Cr (VI) by inorganic-organic clay. Journal of colloid and interface science. 2017 Mar 15; 490: 163-73.
 
[17]  Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TM, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of hazardous materials. 2021 Aug 15; 416: 125912.
 
[18]  Barakat MA. New trends in removing heavy metals from industrial wastewater. Arabian journal of chemistry. 2011 Oct 1; 4(4): 361-77.
 
[19]  Vareda JP, Valente AJ, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of environmental management. 2019 Sep 15; 246: 101-18.
 
[20]  Giraudet S. Performances et sécurité des procédés de traitement des composés organiques volatils par adsorption sur charbon actif. Thèse, Université de Nantes, (2007).
 
[21]  Ezeugo J N O, Anadebe C V. Removal of potassium permanganate from aqueous solution by adsorption onto activated carbon prepared from animal bone and corn cob. Journal of Engineering. (2018), (1), 29-36.
 
[22]  Hatem A., Al-Aoh. Equilibrium, thermodynamic and kinetic study for potassium permanganate adsorption by Neem leaves powder. Desalination and water treatment 170 (2019) 101-110.
 
[23]  Bani-Atta S. Potassium permanganate dye removal from synthetic wastewater using a novel, low-cost adsorbent, modified from the powder of Foeniculum vulgare seeds. Scientific Reports, 2022, 12(1), 4547.
 
[24]  Aprilliani F et al. A Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxydation material. Earth and Environnemental science, 141 (2018), 012003.
 
[25]  Aljohani M., Al-Aoh H A. Adsorptive removal of permanganate anions from synthetic wastewater using copper sulfide nanoparticules. Materials Research Express, (2021), 8(3), 035012.
 
[26]  Amola, L.A., Kamgaing, T., Tchuifon, D.R.T., Atemkeng, C.D. and Anagho, S.G. (2020) Activated Carbons Based on Shea Nut Shells (Vitellaria paradoxa): Optimization of Preparation by Chemical Means Using Response Surface Methodology and Physicochemical Characterization. Journal of Materials Science and Chemical Engineering, 8, 53-72.
 
[27]  T. Belin, C. Mve Mfoumou, S. Mignard, Y. Pouilloux, Study of physisorbed carbon dioxide on zeolites modified by addition of oxides or acetate impregnation, Microporous and Mesoporous Materials, 182 (2013) 109-116.
 
[28]  S. Brunauer, P.H. Emmett, E.J. Teller, J. Am. Chem. Soc. 60 (1938) 309.
 
[29]  B.C. Lippens, J.H. De Boer, J. Catal. 4 (1965) 319.
 
[30]  J.H. De Boer, B.C. Lippens, B.G. Lisen, B.C.P. Broekhoff, A. Van Den Heuvel, T.J. Osinga, J. Colloid Interface Sci. 21 (1966) 405.
 
[31]  J. Lynch, F. Raatz, P. Dufresne, Zeolites 7 (1987) 333.
 
[32]  Boehm, H.P. (1966) Chemical Identification of Surface Groups. Advances in Catalysis, 16, 179.
 
[33]  Maazou, S.D.B., Hima, H.I. and Mousbahou, M. (2017) Elimination du chrome par du charbon actif élaboré et caractérisé à partir de la coque du noyau de Balanites aegyptiaca. International Journal of Biological and Chemical Sciences, 11, 3050-3065.
 
[34]  Goertzen, S.L., et al., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. 2010. 48(4): p. 1252-1261.
 
[35]  Charly Mve Mfoumou, Pradel Tonda-Mikiela, Francis Ngoye, Thomas Belin, and Samuel Mignard, “Dynamic Adsorption and Desorption of CO2 from Binary Mixtures of CH4 and C3H8 on X Type Zeolites.” American Journal of Environmental Protection, vol. 10, no. 2 (2022): 83-90.
 
[36]  Lagergren S., Zur theorie der sogenannten adsorption gel oster stoffe, K sven. Vetenskapsak. Handl. 24, 1-39, 1898.
 
[37]  Blanchard G., Maunaye M., Martin G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 18, 1501-1507, 1984.
 
[38]  HO Y.S., G. MCKAY (1999). Pseudo-second-order model for sorption processes. Proc. Biochem., 34, 451-465.
 
[39]  Weber J. Jr. Adsorption in physicochemical process for water quality control, Ed. By Metcalf R L. et Pitts J N, Weley interscience, N Y, Chap. 5, 199-259, 1972.
 
[40]  IUPAC, Pure Appl. Chem. 57 (4) (1985) 603.
 
[41]  Malkoc, E. and Y.J.J.o.H.M. Nuhoglu, Removal of Ni (II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column. 2006. 135(1-3): p. 328-336.
 
[42]  Tan, I., A. Ahmad, and B.J.B.t. Hameed, Fixed-bed adsorption performance of oil palm shell-based activated carbon for removal of 2, 4, 6-trichlorophenol. 2009. 100(3): p. 1494-1496.
 
[43]  Niyaz Mohammad Mahmoodi, Bagher Hayati, Mokhtar Arami, Christopher Lan, Adsorption of textile dyes on pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Powder Technology. 2011. 268(1-3): p. 117-125.
 
[44]  Ji Hae Seo, Namgyu Kim, Munsik Park, Sunkyung Lee, Seungjae Yeon, Donghee Park, Evaluation of metal removal performance of rod-type biosorbent prepared from sewage-sludge, Environmental Engineering Research, 2020. 25(5): p. 700-706.
 
[45]  H.A. Al-Aoh, Desalination and Water Treatment 170 (2019) 101-110.