[1] | Serra M, Brito C and Alves PM. “Bioengineering strategies for stem cell expansion and differentiation.” Canal Bioquímica; 7: 30-38. 2010. |
|
[2] | Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, McKenzie S, Broxmeyer HE, Moore MA. “Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny.” Blood; 56(2): 289-301. 1980. |
|
[3] | Fehrer C and Lepperdinger G. “Mesenchymal stem cell aging”. Experimental Gerontology; 40:926-930. 2005. |
|
[4] | Mante M, Daniels B, Golden E, Diefenderfer D, Reilly G, Leboy PS. “Attachment of human marrow stromal cells to titanium surfaces.” J Oral Implantol; 29: 66-72. 2003. |
|
[5] | Nishimoto SK, Nishimoto M, Park SW, Lee KM, Kim HS, Koh JT, Ong JL, Liu Y, Yang Y. “The effect of titanium surface roughening on protein absorption, cell attachment, and cell spreading.” Int J Oral Maxillofac Implants. 23, 675-680. 2008. |
|
[6] | Yamashita D, Machigashira M, Miyamoto M, Takeuchi H, Noguchi K, Izumi Y, Ban S. “Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia.” Dent Mater J.; 28, 461-470. 2009. |
|
[7] | Osathanon T, Bespinyowong K, Arksornnukit M, Takahashi H, Pavasant P. “Human osteoblast-like cell spreading and proliferation on Ti-6Al-7Nb surfaces of varying roughness.” J Oral Sci. 53(1):23-30. 2011. |
|
[8] | Musgrove E, Seaman M, Hedley D. “Relationship between cytoplasmic pH and proliferation during exponential growth and cellular quiescence.” Exp Cell Res.; 172(1):65-75. 1987. |
|
[9] | Ramp WK, Lenz LG, Kaysinger KK. “Medium pH modulates matrix, mineral, and energy metabolism in cultured chick bones and osteoblast-like cells.” Bone Miner 24:59-73. 1994. |
|
[10] | Yamaguchi DT, Huang JT, Ma D. “Regulation of gap junction intracellular communication by pH in MC3T3-E1 osteoblastic cells.” J Bone Miner Res. 10:1891-1899. 1995. |
|
[11] | Kaysinger KK, Ramp WK. “Extracellular pH modulates the activity of cultured human osteoblasts.” J Cell Biochem.; 68 (1):83-9. 1998. |
|
[12] | Oliveira P DA, de Oliveira RF, Zangaro RA, Soares CP. “Evaluation of low-level laser therapy of osteoblastic cells.” Photomed Laser Surg. 26 (4):401-4. 2008. |
|
[13] | Yamada K. “Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1).” Nihon Seikeigeka Gakkai Zasshi.; 65(9):787-99. 1991. |
|
[14] | Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K. “Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material.” Biomaterials; 26(17):3503-9. 2005. |
|
[15] | Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R. “Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix.” Lasers Med Sci.; 20(3-4):138-46. 2005. |
|
[16] | Pinheiro, A.L.B., and Gerbi, M.E.M.M. “Photo engineering of bone repair processes.” Photomed. Laser Surg. 24, 169-179. 2006. |
|
[17] | Boulton M, Marshall J “He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro.” Lasers Life Sci.; 1:123-134. 1986. |
|
[18] | Saygun I, Nizam N, Ural AU, Serdar MA, Avcu F, Tözüm TF. “Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts.” Photomed Laser Surg.; 30(3):149-54. Jan., 2012. |
|
[19] | Doan N, Reher P, Meghji S, Harris M. “In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes.” J Oral Maxillofac Surg.; 57(4):409-19. Apr., 1999. |
|
[20] | Ercan and Webster, “Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation.” Int J Nanomedicine.; 3(4): 477-485. December, 2008. |
|
[21] | Ferrier J, Ross SM, Kanehisa J, Aubin JE. “Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field.” J Cell Physiol; 129: 283-288. 1986. |
|
[22] | Dubey AK, Gupta SD, Basu B. “Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces.” J Biomed Mater Res B Appl Biomater.; 98(1):18-29. Jul., 2011. |
|
[23] | Supronowicz PR, Ajayan PM, Ullmann KR, et al. “Novel currentconducting composite substrates for exposing osteoblasts to alternating current stimulation.” J Biomed Mater Res, 59:499-506. 2001. |
|
[24] | Kaur P., Li A. “Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells.” J. Invest. Dermatol.; 114: 413-420. 2000. |
|
[25] | Matsubara T, Tsutsumi S, Pan H, Hiraoka H, Oda R, Nishimura M, Kawaguchi H, Nakamura K, Kato Y. “A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix.” Biochem Biophys Res Commun. 16; 313(3):503-8. 2004. |
|
[26] | Martinez-Hernandez A., Chung A.E. “The ultrastructural localization of two basement membrane components: entactin and laminin in rat tissues.” J. Histochem. Cytochem.; 32: 289-298. 1984. |
|
[27] | Centrella M, McCarthy TL, Canalis E. “Platelet-derived growth factor enhances deoxyribonucleic acid and collagen synthesis in osteoblast enriched cultures from fetal rat parietal bone.” Endocrinology; 125: 13-19. 1989. |
|
[28] | Pfeilschifter J, Oechsner M, Naumann A, Gronwald RG, Minne HW, Ziegler R.. “Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin-like growth factor I, plateletderived growth factor, and transforming growth factor beta.” Endocrinology 127: 69-75. 1989. |
|
[29] | Abed E, Moreau R. “Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor.” Am J Physiol Cell Physiol.; 297(2):C360-8. 2009. |
|
[30] | Abed E, Moreau R. “Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation.” Cell Prolif ; 40: 849-865. 2007. |
|
[31] | Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A. “LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability.” Nature; 411: 590-595. 2001. |
|
[32] | Reid IR and Cornish J. Amylin and calcitonin gene-related peptide. In: Principles of Bone Biology (2nd ed.), edited by Bilezikian JS, Raisz LG, and Rodan GA. San Diego, CA: Academic, 2002, 641-654. |
|
[33] | Villa I, Dal Fiume C, Maestroni A, Rubinacci A, Ravasi F, Guidobono F. “Human osteoblast-like cell proliferation induced by calcitonin-related peptides involves PKC activity.” Am J Physiol Endocrinol Metab.; 284(3):627-33. 2002. |
|
[34] | Bouillon R. “Diabetic bone disease.” Calcif. Tissue Int.; 49: 155-160.1991. |
|
[35] | Villa I, Rubinacci A, Ravasi F, Ferrara AF, Guidobono F. “Effects of amylin on human osteoblast-like cells.” Peptides. ;18 (4):537-40. 1997. |
|
[36] | Alam, A. S., B. S. Moonga, P. J. Bevis, C. L. Huang, and M. Zaidi. “Amylin inhibits bone resorption by a direct effect on the motility of rat osteoclasts.” Exp. Physiol. 78: 183-196. 1993. |
|
[37] | Cornish J, Callon KE, Lin CQ, Xiao CL, Mulvey TB, Coy DH, Cooper GJ, Reid IR. “Dissociation of the effects of amylin on osteoblast proliferation and bone resorption.” Am J Physiol.; 274:827-33. May, 1998. |
|
[38] | Van Rossum, D., Hanisch, U.K., Quirion, R. “Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors.” Neurosci. Behav. Rev. 21, 649-678. 1997. |
|
[39] | Villa I, Melzi R, Pagani F, Ravasi F, Rubinacci A, Guidobono F. “Effects of calcitonin gene-related peptide and amylin on human osteoblast-like cells proliferation.” Eur J Pharmacol.; 409(3):273-8. 2000. |
|
[40] | Vignery, A., McCarthy, T.L. “The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor I production by primary fetal rat osteoblasts.” Bone; 18, 331-335. 1996. |
|
[41] | Marie, P.J. “Cellular and molecular alterations of osteoblasts in human disorders of bone formation.” Histol. Histopathol.; 14, 525-538. 1999. |
|
[42] | Zaidi, M., Chamber, T.J., Gaines, R.E., Morris, H.R., McIntyre, I. “A direct action of human calcitonin gene related peptide on isolated osteoclasts.” J. Endocrinol. 115, 511-518. 1987. |
|
[43] | Aiyar, N., Rand, K., Elshourbagy, N.A., Zeng, Z., Adamou, J.E., Bergsma, D.J., Li, Y. “A cDNA encoding the calcitonin gene-related type I receptor.” J. Biol. Chem.; 19, 11325-11329. 1996. |
|
[44] | Andreas L, Young GY, Robyn AB, Lan W, Anna LN, Joel FH. “No evidence for significant transdifferentiation of bone marrow into pancreatic β-cells in vivo.” Diabetes; 53: 616-623. 2004. |
|
[45] | Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD. “Failure of bone marrow cells to transdifferentiate into neural cells in vivo.” Science; 297: 1299. 2002. |
|
[46] | Meza-Zepeda LA, Noer A, Dahl JA, Micci F, Myklebost O, Collas P. High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med; 12: 553-563. 2008. |
|
[47] | Dhanasekaran M, Indumathi S, Rajkumar JS, Sudarsanam D. “Effect of high glucose on extensive culturing of mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow.” Cell Biochem Funct. doi: 10.1002/cbf.2851. 2012. |
|
[48] | Ulibarri JA, Mozdziak PE, Schultz E, Cook C, Best TM. “Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro.” In vitro Cell Dev Biol Anim.; 35(4):215-8. 1999. |
|
[49] | Riancho, J.A., Zarrabeitia, M.T., Salas, E., and Gonzalez-Macias, J. “Impairment of osteoblast growth by nitric oxide synthase inhibitors: an effect independent of nitric oxide and arginine transport inhibition.” Methods Find Exp. Clin. Pharmacol. 18: 663-667. 1996. |
|
[50] | Kanamaru Y, Takada T, Saura R, Mizuno K. “Effect of nitric oxide on mouse clonal osteogenic cell, MC3T3-E1, proliferation in vitro.” Kobe J Med Sci.; 47(1):1-11. 2001. |
|
[51] | Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. “Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy.” Exp Hematol. ; 28(6):707-15. 2000. |
|
[52] | Hu JB, Zhou Y, Jiang DD, Tan WS. “Proliferation and differentiation characteristics of human bone marrow mesenchymal stem cells during ex-vivo expansion.” [Article in Chinese] (abstract) Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. ; 22 (1):7-10. 2006. |
|
[53] | Xiao Y, Peperzak V, van Rijn L, Borst J, de Bruijn JD. “Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells.” J Tissue Eng Regen Med.; 4(5): 374-86. 2010. |
|
[54] | Pradel W, Mai R, Gedrange T, Lauer G. “Cell passage and composition of culture medium effects proliferation and differentiation of human osteoblast-like cells from facial bone.” J Physiol Pharmacol.; 59 (5):47-58. 2008. |
|
[55] | Kondo H, Nomaguchi TA, Sakurai Y, Yonezawa Y, Kaji K, et al. “Effects of serum from human subjects of various ages on proliferation of human lung and skin fibroblasts.” Exp Cell Res; 178: 287-295. 1988. |
|
[56] | George T, Velloso CP, Alsharidah M, Lazarus NR, Harridge SD. “Sera from young and older humans equally sustain proliferation and differentiation of human myoblasts.” Exp Gerontol 45: 875-881. 2010. |
|
[57] | Lohmann M, Walenda G, Hemeda H, Joussen S, Drescher W, Jockenhoevel S Hutschenreuter G, Zenke M, Wagner W. “Donor Age of Human Platelet Lysate Affects Proliferation and Differentiation of Mesenchymal Stem Cells.” PLoS One; 7 (5): 1-11. 2012. |
|
[58] | Avanzini MA, Bernardo ME, Cometa AM, Perotti C, Zaffaroni N, et al. “Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors.” Haematologica. ; 94(12):1649-60. 2009. |
|
[59] | Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. “Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation.” J Oral Maxillofac Surg.; 63(3):362-9. 2005. |
|
[60] | Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M. “The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts.” Clin Oral Implants Res.; 17(2):212-9. 2006. |
|
[61] | Marx RE, Carlson ER, Eichstaedt RM, et al. “Platelet-rich plasma: Growth factor enhancement for bone grafts.” Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 85(6):638-46. 1998. |
|
[62] | Hawke TJ, Garry DJ. “Myogenic satellite cells: physiology to molecular biology.” J Appl. Physiol; 91: 534-551. 2001. |
|
[63] | Vitello L., Radu C., Malerba A, Segat D, Cantini M, Carraro U and Baroni M D. “Enhancing Myoblast Proliferation by Using Myogenic Factors: A Promising Approach for Improving Fiber Regeneration in Sport Medicine and Skeletal Muscle Diseases.” Basic Appl Myol 14(1): 45-51. 2004. |
|
[64] | Cantini M, Giurisato E, Radu C, Tiozzo S, Pampinella F, Senigaglia D, Zaniolo G, Mazzoleni F, Vitiello L. “Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo.” Neurol Sci.; 23(4):189-94. 2002. |
|
[65] | Cantini M, Massimino M L, Bruson A, Catani C, Dalla Libera L, Carraro U. “Macrophages regulate proliferation and differentiation of satellite cells.” Biochem Biophys Res Commun; 202: 1688- 1696. 1994. |
|
[66] | Wang Q, Yu JH, Zhai HH, Zhao QT, Chen JW, Shu L, Li DQ, Liu DY, Dong C, Ding Y. “Temporal expression of estrogen receptor alpha in rat bone marrow mesenchymal stem cells.” Biochem Biophys Res Commun. 18; 347(1):117-23. 2006. |
|
[67] | Ernst M, Schmid C, Froesch ER. “Enhanced osteoblast proliferation and collagen gene expression by estradiol.” Proc Natl Acad Sci USA.; 85(7):2307-10. 1988. |
|
[68] | Hong L, Zhang G, Sultana H, Yu Y, Wei Z. “The effects of 17-β estradiol on enhancing proliferation of human bone marrow mesenchymal stromal cells in vitro.” Stem Cells Dev.; 20 (5):925-31. 2011. |
|
[69] | Sato R, Maesawa C, Fujisawa K, Wada K, Oikawa K, Takikawa Y, Suzuki K, Oikawa H, Ishikawa K, Masuda T. “Prevention of critical telomere shortening by oestradiol in human normal hepatic cultured cells and carbon tetrachloride induced rat liver fibrosis.” Gut.; 53(7):1001-9. 2004. |
|
[70] | Waymouth C. “Feeding the Baby"-Designing the Culture Milieu to Enhance Cell Stability.” J Natl Cancer Inst ; 53: 1443-1448. 1974. |
|
[71] | Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR. “Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use.” Exp Hematol. ; 32 (12):1212-25. 2004. |
|
[72] | Hankey DP, McCabe RE, Doherty MJ, Nolan PC, McAlinden MG, Nelson J, Wilson DJ. “Enhancement of human osteoblast proliferation and phenotypic expression when cultured in human serum.” Acta Orthop Scand.; 72 (4):395-403. 2001. |
|
[73] | Bieback K, Hecker A, Kocaömer A, Lannert H, Schallmoser K, Strunk D, Klüter H. “Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow.” Stem Cells.; 27 (9):2331-41. 2009. |
|
[74] | Kuang WY, Zhou XF, Zhang GS, Liu LH, Chen SF, Li RJ, Xiao L. “In vitro expansion of the adult human bone marrow mesenchymal stem cells for clinic application in HSCT”. [Article in Chinese] (abstract) Zhongguo Shi Yan Xue Ye Xue Za Zhi. ; 16 (3):633-8. 2008. |
|
[75] | Kocaoemer A, Kern S, Klüter H, Bieback K. “Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue.” Stem Cells.; 25(5):1270-8. 2007. |
|
[76] | Meuleman N, Tondreau T, Delforge A, Dejeneffe M, Massy M, Libertalis M, Bron D, Lagneaux L. “Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium.” Eur J Haematol. ; 76 (4):309-16. 2006. |
|
[77] | Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR. “Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine.” J Cell Physiol. Oct; 213(1):18-26. 2007. |
|
[78] | MacPherson H, Noble BS, Ralston SH. “Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells.” Bone. ; 24 (3):179-85. 1999. |
|
[79] | Zhu L.L., Wu L.Y., Yew D.T., Fan M. “Effects of hypoxia on the proliferation and differentiation of NSCs.” Mol. Neurobiol.; 31:231-242. 2005. |
|
[80] | Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. “Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs.” J Cell Physiol.; 207(2):331-9. 2006. |
|
[81] | Ivanovic Z., Bartolozzi B., Bernabei P.A., Cipolleschi M.G., et al. “Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors.” Br. J. Haematol.; 108: 424-429. 2000. |
|
[82] | Lennon DP, Edmison JM, Caplan AI. “Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis.” J Cell Phys.; 187:345-355. 2001. |
|