[1] | Tlaskalová-Hogenová H, Štěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, Rossmann P, Hrnčíř T, Kverka M, Zákostelská Z: The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cellular & molecular immunology 2011, 8(2): 110-120. |
|
[2] | Round JL, Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology 2009, 9(5): 313-323. |
|
[3] | Sokol H, Seksik P, Rigottier‐Gois L, Lay C, Lepage P, Podglajen I, Marteau P, Doré J: Specificities of the fecal microbiota in inflammatory bowel disease. Inflammatory bowel diseases 2006, 12(2): 106-111. |
|
[4] | Kagira JM, Kanyari PWN, Maingi N, Githigia SM, Ng’ang’a J, Karuga JW: Characteristics of the smallholder free-range pig production system in western Kenya. Tropical animal health and production 2010, 42(5): 865-873. |
|
[5] | Mutua F, Dewey C, Arimi S, Ogara W, Githigia S, Levy M, Schelling E: Indigenous pig management practices in rural villages of Western Kenya. Livestock Research for Rural Development 2011, 23(7). |
|
[6] | Hamill LC, Kaare MT, Welburn SC, Picozzi K: Domestic pigs as potential reservoirs of human and animal trypanosomiasis in Northern Tanzania. Parasit Vectors 2013, 6: 322. |
|
[7] | Thomas LF, de Glanville WA, Cook EA, Fèvre EM: The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya. BMC veterinary research 2013, 9(1): 46. |
|
[8] | Nwanta JA, Shoyinka SV, Chah KF, Onunkwo JI, Onyenwe IW, Eze JI, Iheagwam CN, Njoga EO, Onyema I, Ogbu KI: Production characteristics, disease prevalence, and herd-health management of pigs in Southeast Nigeria. Journal of Swine Health and Production 2011, 19(6): 331-339. |
|
[9] | Eshitera EE, Githigia SM, Kitala P, Thomas LF, Fèvre EM, Harrison LJ, Mwihia EW, Otieno RO, Ojiambo F, Maingi N: Prevalence of porcine cysticercosis and associated risk factors in Homa Bay District, Kenya. BMC veterinary research 2012, 8(1): 234. |
|
[10] | Jørgensen CJ, Cavaco LM, Hasman H, Emborg H-D, Guardabassi L: Occurrence of CTX-M-1-producing Escherichia coli in pigs treated with ceftiofur. Journal of Antimicrobial Chemotherapy 2007, 59(5): 1040-1042. |
|
[11] | Cavaco L, Abatih E, Aarestrup FM, Guardabassi L: Selection and persistence of CTX-M-producing Escherichia coli in the intestinal flora of pigs treated with amoxicillin, ceftiofur, or cefquinome. Antimicrobial agents and chemotherapy 2008, 52(10): 3612-3616. |
|
[12] | Braae UC, Johansen MV, Ngowi H, Rasmussen TB, Nielsen J, Uttenthal Å: Detection of African Swine Fever Virus DNA in Blood Samples Stored on FTA Cards from Asymptomatic Pigs in Mbeya Region, Tanzania. Transboundary and emerging diseases 2013. |
|
[13] | Misinzo G, Kwavi D, Sikombe C, Makange M, Peter E, Muhairwa A, Madege M: Molecular characterization of African swine fever virus from domestic pigs in northern Tanzania during an outbreak in 2013. Tropical animal health and production 2014. |
|
[14] | Kessy MJ, Machang’u RS, Swai ES: A microbiological and serological study of leptospirosis among pigs in the Morogoro municipality, Tanzania. Tropical animal health and production 2010, 42(3): 523-530. |
|
[15] | Mdegela RH, Laurence K, Jacob P, Nonga HE: Occurrences of thermophilic Campylobacter in pigs slaughtered at Morogoro slaughter slabs, Tanzania. Tropical animal health and production 2011, 43(1): 83-87. |
|
[16] | Komba EV, Mdegela RH, Msoffe PL, Ingmer H: Human and animal Campylobacteriosis in Tanzania: A review. Tanzania Journal of Health Research 2013, 15(1): 1-13. |
|
[17] | Costa MC, Arroyo LG, Allen-Vercoe E, Stämpfli HR, Kim PT, Sturgeon A, Weese JS: Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PloS one 2012, 7(7): e41484. |
|
[18] | Mwaikono KS, Maina S, Sebastian A, Schilling M, Kapur V, Gwakisa P: High-throughput sequencing of 16S rRNA gene reveals substantial bacterial diversity on the municipal dumpsite. BMC microbiology 2016, 16(1): 145. |
|
[19] | Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the national academy of sciences 2011, 108(Supplement 1):4516-4522. |
|
[20] | Illumina: 16S Metagenomic Sequencing Library preparation Guide: http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.ilmn). 2013. |
|
[21] | Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and environmental microbiology 2009, 75(23):7537-7541. |
|
[22] | Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research 2013, 41(D1): D590-D596. |
|
[23] | Rognes T, Flouri T, Nichols B, Quince C, Mahé F: VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016, 4:e2584. |
|
[24] | Bunge J: Estimating the number of species with CatchAll. In: Pacific Symposium on Biocomputing: 2011. World Scientific: 121-130. |
|
[25] | Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM: Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic acids research 2014, 42(D1): D633-D642. |
|
[26] | Gihring TM, Green SJ, Schadt CW: Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environmental Microbiology 2012, 14(2):285-290. |
|
[27] | Chao A: Nonparametric estimation of the number of classes in a community. Scand J Stat 1984, 11:265-270. |
|
[28] | Hunter PR, Gaston MA: Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. Journal of clinical microbiology 1988, 26(11): 2465-2466. |
|
[29] | Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C: Metagenomic biomarker discovery and explanation. Genome biology 2011, 12(6):R60. |
|
[30] | Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome biology 2010, 11(8): R86. |
|
[31] | Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology 2013, 31(9):814-821. |
|
[32] | Parks DH, Tyson GW, Hugenholtz P, Beiko RG: STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30(21): 3123-3124. |
|
[33] | Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear J, Caporaso G, Blekhman R, Knight R: BugBase Predicts Organism Level Microbiome Phenotypes. bioRxiv 2017:133462. |
|
[34] | Alain B. Pajarillo E, Chae J-P, P. Balolong M, Bum Kim H, Kang D-K: Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. The Journal of general and applied microbiology 2014, 60(4):140-146. |
|
[35] | Pajarillo EAB, Chae JP, Kim HB, Kim IH, Kang D-K: Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation. Applied microbiology and biotechnology 2015, 99(13):5647-5656. |
|
[36] | Christiaen SE, Motherway MOC, Bottacini F, Lanigan N, Casey PG, Huys G, Nelis HJ, van Sinderen D, Coenye T: Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLoS One 2014, 9(5):e98111. |
|
[37] | Vlasova AN, Chattha KS, Kandasamy S, Liu Z, Esseili M, Shao L, Rajashekara G, Saif LJ: Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PloS one 2013, 8(10):e76962. |
|
[38] | Kandasamy S, Chattha KS, Vlasova AN, Rajashekara G, Saif LJ: Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut microbes 2014, 5(5):639-651. |
|
[39] | Pokusaeva K, Fitzgerald GF, van Sinderen D: Carbohydrate metabolism in Bifidobacteria. Genes & nutrition 2011, 6(3): 285-306. |
|
[40] | Hinz SW, Van den Broek LA, Beldman G, Vincken J-P, Voragen AG: β-Galactosidase from Bifidobacterium adolescentis DSM20083 prefers β (1, 4)-galactosides over lactose. Applied microbiology and biotechnology 2004, 66(3): 276-284. |
|
[41] | Jakobsson HE, Rodríguez‐Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, Sommer F, Bäckhed F, Hansson GC, Johansson ME: The composition of the gut microbiota shapes the colon mucus barrier. EMBO reports 2015, 16(2): 164-177. |
|
[42] | Sun Y, Zhou L, Fang L, Su Y, Zhu W: Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet. Frontiers in microbiology 2015, 6: 877. |
|
[43] | Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A: Enterococci as probiotics and their implications in food safety. International journal of food microbiology 2011, 151(2): 125-140. |
|
[44] | Araújo TF, Ferreira CLdLF: The genus Enterococcus as probiotic: safety concerns. Brazilian archives of biology and technology 2013, 56(3): 457-466. |
|
[45] | Novais C, Freitas AR, Silveira E, Antunes P, Silva R, Coque TM, Peixe L: Spread of multidrug-resistant Enterococcus to animals and humans: an underestimated role for the pig farm environment. Journal of Antimicrobial Chemotherapy 2013:dkt289. |
|
[46] | Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A, Mazumdar V, Corander J, Cheng L, Saif S, Young S: Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. mBio 2013, 4(4):e00534-00513. |
|
[47] | Freitas AR, Coque TM, Novais C, Hammerum AM, Lester CH, Zervos MJ, Donabedian S, Jensen LB, Francia MV, Baquero F: Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. Journal of clinical microbiology 2011, 49(3):925-931. |
|
[48] | Remschmidt C, Behnke M, Kola A, Diaz LAP, Rohde AM, Gastmeier P, Schwab F: The effect of antibiotic use on prevalence of nosocomial vancomycin-resistant enterococci-an ecologic study. Antimicrobial Resistance & Infection Control 2017, 6(1):95. |
|
[49] | Isaacson R, Kim HB: The intestinal microbiome of the pig. Animal Health Research Reviews 2012, 13(01): 100-109. |
|
[50] | Leser TD, Lindecrona RH, Jensen TK, Jensen BB, Møller K: Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Applied and environmental microbiology 2000, 66(8): 3290-3296. |
|
[51] | Castillo M, Martín-Orúe SM, Nofrarías M, Manzanilla EG, Gasa J: Changes in caecal microbiota and mucosal morphology of weaned pigs. Veterinary Microbiology 2007, 124(3-4):239-247. |
|
[52] | Lamendella R: Comparative metagenomic approaches reveal swine-specific bacterial populations useful for fecal source identification, vol. 71; 2010. |
|
[53] | Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI: Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011, 332(6032):970-974. |
|
[54] | Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G: Environmental and gut bacteroidetes: the food connection. Frontiers in microbiology 2011, 2. |
|
[55] | Garner MR, Flint JF, Russell JB: Allisonella histaminiformans gen. nov., sp. nov.: A novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Systematic and applied microbiology 2002, 25(4):498-506. |
|
[56] | Garner MR, Gronquist MR, Russell JB: Nutritional requirements of Allisonella histaminiformans, a ruminal bacterium that decarboxylates histidine and produces histamine. Current microbiology 2004, 49(4):295-299. |
|
[57] | Vastrad BM, Neelagund SE: Optimizing the medium conditions for production of tetracycline by solid state fermentation of Streptomyces aureofaciens NCIM 2417 using statistical experimental methods. Biosci Eng 2014, 1: 29-44. |
|
[58] | Petković H, Lukežič T, Šušković J: Biosynthesis of Oxytetracycline by Streptomyces rimosus: Past, Present and Future Directions in the Development of Tetracycline Antibiotics. Food Technology and Biotechnology 2017, 55(1): 3-13. |
|
[59] | Mwaikono KS, Maina S, Gwakisa P: Prevalence and Antimicrobial Resistance Phenotype of Enteric Bacteria from a Municipal Dumpsite. Journal of Applied & Environmental Microbiology 2015, 3(3): 82-94. |
|
[60] | Hasman H, Moodley A, Guardabassi L, Stegger M, Skov R, Aarestrup FM: Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Veterinary microbiology 2010, 141(3): 326-331. |
|
[61] | van Cleef BA, Graveland H, Haenen AP, van de Giessen AW, Heederik D, Wagenaar JA, Kluytmans JA: Persistence of livestock-associated methicillin-resistant Staphylococcus aureus in field workers after short-term occupational exposure to pigs and veal calves. Journal of clinical microbiology 2011, 49(3): 1030-1033. |
|
[62] | Sommer M, Church GM, Dantas G: Functional characterization of the antibiotic resistance reservoir in the human microflora. Virulence 2010, 1(4): 299-303. |
|
[63] | Domingues S, Nielsen KM, da Silva GJ: Various pathways leading to the acquisition of antibiotic resistance by natural transformation. Mobile genetic elements 2012, 2(6):257-260. |
|
[64] | Djordjevic SP, Stokes HW, Chowdhury PR: Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Frontiers in microbiology 2013, 4. |
|
[65] | Gyles C, Boerlin P: Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Veterinary pathology 2014, 51(2): 328-340. |
|
[66] | Kazazian Jr HH, Moran JV: Mobile DNA in health and disease. New England Journal of Medicine 2017, 377(4): 361-370. |
|
[67] | Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W: The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet infectious diseases 2013, 13(2): 155-165. |
|
[68] | Baron S, Larvor E, Chevalier S, Jouy E, Kempf I, Granier SA, Lesne J: Antimicrobial Susceptibility among Urban Wastewater and Wild Shellfish Isolates of Non-O1/Non-O139 Vibrio cholerae from La Rance Estuary (Brittany, France). Frontiers in Microbiology 2017, 8: 1637. |
|