Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: https://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2017, 5(2), 57-73
DOI: 10.12691/jaem-5-2-2
Open AccessArticle

Microbial β-Glucosidases: Screening, Characterization, Cloning and Applications

Amer Ahmed1, , Muhammad Aslam2, Muhammad Ashraf2, Faiz ul-Hassan Nasim2, , Kashfa Batool2 and Aasia Bibi2

1Department of Biochemistry and Biotechnology, Faculty of Science, The Islamia University of Bahawalpur, Pakistan

2Department of Chemistry, Biochemistry Section, Faculty of Science, The Islamia University of Bahawalpur, Pakistan

Pub. Date: June 21, 2017

Cite this paper:
Amer Ahmed, Muhammad Aslam, Muhammad Ashraf, Faiz ul-Hassan Nasim, Kashfa Batool and Aasia Bibi. Microbial β-Glucosidases: Screening, Characterization, Cloning and Applications. Journal of Applied & Environmental Microbiology. 2017; 5(2):57-73. doi: 10.12691/jaem-5-2-2

Abstract

Cellulose is the most abundant biomaterial in the biosphere and the major component of plant biomass. Cellulase is an enzymatic system required for conversion of renewable cellulose biomass into free sugar for subsequent use in different applications. Cellulase system mainly consists of three individual enzymes namely: endoglucanase, exoglucanase and β-glucosidases. β-Glucosidases are ubiquitous enzymes found in all living organisms with great biological significance. β-Glucosidases have also tremendous biotechnological applications such as biofuel production, beverage industry, food industry, cassava detoxification and oligosaccharides synthesis. Microbial β-glucosidases are preferred for industrial uses because of robust activity and novel properties exhibited by them. This review aims at describing the various biochemical methods used for screening and evaluating β-glucosidases activity from microbial sources. Subsequently, it generally highlights techniques used for purification of β-glucosidases. It then elaborates various biochemical and molecular properties of this valuable enzyme such as pH and temperature optima, glucose tolerance, substrate specificity, molecular weight, and multiplicity. Furthermore, it describes molecular cloning and expression of bacterial, fungal and metagenomic β-glucosidases. Finally, it highlights the potential biotechnological applications of β-glucosidases.

Keywords:
lignocellulose biomass cellulose cellulase β-glucosidase biofuel transglycosylation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Ahmed A, Nasim Fu-H, Batool K, Bibi A. Microbial β-Glucosidase: Sources, Production and Applications. Journal of Applied & Environmental Microbiology 2017, 5(1): 31-46.
 
[2]  Acharya S, Chaudhary A. Bioprospecting thermophiles for cellulase production: a review. Brazilian Journal of Microbiology 2012, 43(3): 844-856.
 
[3]  Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences 2014, 7(2): 163-173.
 
[4]  Persson I, Tjerneld F, Hahn-Hägerdal B. Fungal cellulolytic enzyme production: A review. Process Biochemistry 1991, 26(2): 65-74.
 
[5]  Pérez J, Munoz-Dorado J, de la Rubia T, Martinez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology 2002, 5(2): 53-63.
 
[6]  Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH. Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels 2012, 5: 45-45.
 
[7]  Béguin P, Aubert J-P. The biological degradation of cellulose. FEMS Microbiology Reviews 1994, 13(1): 25-58.
 
[8]  Mussatto SI, Teixeira J. Lignocellulose as raw material in fermentation processes. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Méndez-Vilas, A, Ed) 2010, 2: 897-907.
 
[9]  Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE. Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology 2015, 29: 108-119.
 
[10]  Tiwari P, Misra B, Sangwan NS. β-Glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. BioMed Research International 2013, 2013.
 
[11]  Singh G, Verma A, Kumar V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016, 6(1): 1-14.
 
[12]  Bhatia Y, Mishra S, Bisaria V. Microbial β-glucosidases: cloning, properties, and applications. Critical Reviews in Biotechnology 2002, 22(4): 375-407.
 
[13]  Teugjas H, Väljamäe P. Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnology for Biofuels 2013, 6(1): 1.
 
[14]  Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 2009, 37(Database issue): D233-D238.
 
[15]  Cairns JRK, Esen A. β-Glucosidases. Cellular and Molecular Life Sciences 2010, 67(20): 3389-3405.
 
[16]  Singh G, Verma AK, Kumar V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016, 6(1): 3.
 
[17]  Lieberman RL, Wustman BA, Huertas P, Powe AC, Pine CW, Khanna R, Schlossmacher MG, Ringe D, Petsko GA. Structure of acid [beta]-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nature Chemical Biology 2007, 3(2): 101-107.
 
[18]  Wang Y, Chantreau M, Sibout R, Hawkins S. Plant cell wall lignification and monolignol metabolism. Frontiers in Plant Science 2013, 4: 220.
 
[19]  Stanley D, Rejzek M, Naested H, Smedley M, Otero S, Fahy B, Thorpe F, Nash RJ, Harwood W, Svensson B et al. The Role of α-Glucosidase in Germinating Barley Grains. Plant Physiology 2011, 155(2): 932-943.
 
[20]  Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W. Extracellular β‐glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. Journal of Experimental Botany 2000, 51(346): 937-944.
 
[21]  Barleben L, Panjikar S, Ruppert M, Koepke J, Stöckigt J. Molecular Architecture of Strictosidine Glucosidase: The Gateway to the Biosynthesis of the Monoterpenoid Indole Alkaloid Family. The Plant Cell 2007, 19(9): 2886-2897.
 
[22]  Eksittikul T, Chulavatnatol M. Characterization of cyanogenic β-glucosidase (linamarase) from cassava (Manihot esculenta Crantz). Archives of Biochemistry and Biophysics 1988, 266(1): 263-269.
 
[23]  Balmer D, Flors V, Glauser G, Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Frontiers in Plant Science 2013, 4: 82.
 
[24]  Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology 2013, 127: 500-507.
 
[25]  Fowler T, Brown RD. The bgI1 gene encoding extracellular β‐glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Molecular Microbiology 1992, 6(21): 3225-3235.
 
[26]  Faure D. The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions. Applied and Environmental Microbiology 2002, 68(4): 1485-1490.
 
[27]  Michlmayr H, Kneifel W. β-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health. FEMS Microbiology Letters 2014, 352(1): 1-10.
 
[28]  Sørensen A, Lübeck M, Lübeck PS, Ahring BK. Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 2013, 3(3): 612-631.
 
[29]  Gueguen Y, Chemardin P, Labrot P, Arnaud A, Galzy P. Purification and characterization of an intracellular β‐glucosidase from a new strain of Leuconostoc mesenteroides isolated from cassava. Journal of Applied Microbiology 1997, 82(4): 469-476.
 
[30]  Elliston A, Collins SR, Faulds CB, Roberts IN, Waldron KW. Biorefining of waste paper biomass: Increasing the concentration of glucose by optimising enzymatic hydrolysis. Applied Biochemistry and Biotechnology 2014, 172(7): 3621-3634.
 
[31]  Bohlin C, Praestgaard E, Baumann MJ, Borch K, Praestgaard J, Monrad RN, Westh P. A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Applied Microbiology and Biotechnology 2013, 97(1): 159-169.
 
[32]  Driguez P-A, Potier P, Trouilleux P. Synthetic oligosaccharides as active pharmaceutical ingredients: Lessons learned from the full synthesis of one heparin derivative on a large scale. Natural Product Reports 2014, 31(8): 980-989.
 
[33]  Pozsgay V. Recent developments in synthetic oligosaccharide-based bacterial vaccines. Current Topics in Medicinal Chemistry 2008, 8(2): 126-140.
 
[34]  Boltje TJ, Buskas T, Boons G-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nature Chemistry 2009, 1(8): 611-622.
 
[35]  Seeberger PH, Werz DB. Synthesis and medical applications of oligosaccharides. Nature 2007, 446(7139): 1046-1051.
 
[36]  Veena V, Poornima P, Parvatham R, Kalaiselvi K. Isolation and characterization of β-glucosidase producing bacteria from different sources. African Journal of Biotechnology 2011, 10(66): 14891-14906.
 
[37]  Daenen L, Saison D, Sterckx F, Delvaux F, Verachtert H, Derdelinckx G. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts. Journal of Applied Microbiology 2008, 104(2): 478-488.
 
[38]  Daoust RA, Litsky W. Pfizer selective enterococcus agar overlay method for the enumeration of fecal streptococci by membrane filtration. Applied Microbiology 1975, 29(5): 584-589.
 
[39]  James AL, Yeoman P. Detection of specific bacterial enzymes by high contrast metal chelate formation Part I. 8-Hydroxyquinoline-β-D-glucoside, an alternative to aesculin in the differentation of members of the familiy Enterobacteriaceae. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene Series A 1987, 267(2): 188-193.
 
[40]  James A, Perry J, Ford M, Armstrong L, Gould F. Note: Cyclohexenoesculetin‐β‐D‐glucoside: a new substrate for the detection of bacterial β‐D‐glucosidase. Journal of Applied Microbiology 1997, 82(4): 532-536.
 
[41]  Mendes Ferreira A, Climaco M, Mendes Faia A. The role of non‐Saccharomyces species in releasing glycosidic bound fraction of grape aroma components—a preliminary study. Journal of Applied Microbiology 2001, 91(1): 67-71.
 
[42]  Gao Z, Van Hop D, Yen LTH, Ando K, Hiyamuta S, Kondo R. The production of β-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. AMB Express 2012, 2: 49-49.
 
[43]  Hong J, Tamaki H, Kumagai H. Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Applied Microbiology and Biotechnology 2007, 73(6): 1331-1339.
 
[44]  Du J, Cui C-H, Park SC, Kim J-K, Yu H-S, Jin F-X, Sun C, Kim S-C, Im W-T. Identification and Characterization of a Ginsenoside-Transforming β-Glucosidase from Pseudonocardia sp. Gsoil 1536 and Its Application for Enhanced Production of Minor Ginsenoside Rg 2 (S). PloS one 2014, 9(6): e96914.
 
[45]  Uchiyama T, Yaoi K, Miyazaki K. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome. Frontiers in Microbiology 2015, 6: 548.
 
[46]  Perry J, Morris K, James A, Oliver M, Gould FK. Evaluation of novel chromogenic substrates for the detection of bacterial β‐glucosidase. Journal of Applied Microbiology 2007, 102(2): 410-415.
 
[47]  Liu W, Hong J, Bevan DR, Zhang YHP. Fast identification of thermostable beta‐glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnology and Bioengineering 2009, 103(6): 1087-1094.
 
[48]  Acker MG, Auld DS. Considerations for the design and reporting of enzyme assays in high-throughput screening applications. Perspectives in Science 2014, 1(1–6): 56-73.
 
[49]  Kim S-J, Lee C-M, Kim M-Y, Yeo Y-S, Yoon S-H, Kang H-C, Koo B-S. Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. Journal of Microbiology and Biotechnology 2007, 17(6): 905-912.
 
[50]  Li Y-Y, Jiang C-J, Wan X-C, Zhang Z-Z, Li D-X. Purification and partial characterization of β-glucosidase from fresh leaves of tea plants (Camellia sinensis (L.) O. Kuntze). Acta Biochimica et Biophysica Sinica 2005, 37(6): 363-370.
 
[51]  Olajuyigbe FM, Nlekerem CM, Ogunyewo OA. Production and Characterization of Highly Thermostable β-Glucosidase during the Biodegradation of Methyl Cellulose by Fusarium oxysporum. Biochemistry Research International 2016, 2016.
 
[52]  Rajoka MI, Akhtar MW, Hanif A, Khalid A. Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World Journal of Microbiology and Biotechnology 2006, 22(9): 991-998.
 
[53]  Cao L-c, Wang Z-j, Ren G-h, Kong W, Li L, Xie W, Liu Y-h. Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnology for Biofuels 2015, 8: 202.
 
[54]  Goswami S, Gupta N, Datta S. Using the β-glucosidase catalyzed reaction product glucose to improve the ionic liquid tolerance of β-glucosidases. Biotechnology for Biofuels 2016, 9(1): 1.
 
[55]  Bai H, Wang H, Sun J, Irfan M, Han M, Huang Y, Han X, Yang Q. Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H-11 in submerged fermentation. EXCLI Journal 2013, 12: 528.
 
[56]  Cao P, Wang L, Wang Y, Zhou N, Chen Y. Alkali-tolerant β-glucosidase produced by newly isolated Aspergillus fumigatus WL002 from rotten wood. International Biodeterioration & Biodegradation 2015, 105: 276-282.
 
[57]  Setlow B, Cabrera‐Martinez RM, Setlow P. Mechanism of the hydrolysis of 4‐methylumbelliferyl‐β‐d‐glucoside by germinating and outgrowing spores of Bacillus species. Journal of Applied Microbiology 2004, 96(6): 1245-1255.
 
[58]  YANG L, AKAO T, KOBASHI K, HATTORI M. Purification and Characterization of a Novel Sennoside-Hydrolyzing. BETA.-Glucosidase from Bifidobacterium Sp. Strain SEN, a Human Intestinal Anaerobe. Biological and Pharmaceutical Bulletin 1996, 19(5): 705-709.
 
[59]  Yang S, Jiang Z, Yan Q, Zhu H. Characterization of a thermostable extracellular β-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. Journal of Agricultural and Food Chemistry 2007, 56(2): 602-608.
 
[60]  Yeom S-J, Kim B-N, Kim Y-S, Oh D-K. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. Journal of Agricultural and Food Chemistry 2012, 60(6): 1535-1541.
 
[61]  Yang S, Wang L, Yan Q, Jiang Z, Li L. Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomycesthermophila. Food Chemistry 2009, 115(4): 1247-1252.
 
[62]  Kimura I, Yoshioka N, Tajima S. Purification and characterization of a β-glucosidase with β-xylosidase activity from aspergillus sojae. Journal of Bioscience and Bioengineering 1999, 87(4): 538-541.
 
[63]  Kengen SW, Luesink EJ, STAMS AJ, ZEHNDER AJ. Purification and characterization of an extremely thermostable β‐glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. European Journal of Biochemistry 1993, 213(1): 305-312.
 
[64]  Wierzbicka-Woś A, Bartasun P, Cieśliński H, Kur J. Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with β-glucosidase, β-fucosidase and β-galactosidase activities. BMC Biotechnology 2013, 13(1): 1.
 
[65]  Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJ, Reynolds CD, Sihanonth P. Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. FEMS Microbiology Letters 2007, 270(1): 162-170.
 
[66]  Yoon J-J, Kim K-Y, Cha C-J. Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. The Journal of Microbiology 2008, 46(1): 51-55.
 
[67]  Yang L, Ning ZS, Shi CZ, Chang ZY, Huan LY. Purification and characterization of an isoflavone-conjugates-hydrolyzing β-glucosidase from endophytic bacterium. Journal of Agricultural and Food Chemistry 2004, 52(7): 1940-1944.
 
[68]  Zhang Y, Yuan L, Chen Z, Fu L, Lu J, Meng Q, He H, Yu X, Lin F, Teng L. Purification and characterization of beta-glucosidase from a newly isolated strain Tolypocladium cylindrosporum Syzx4. Chemical Research in Chinese Universities 2009, 27: 557-561.
 
[69]  Gong G, Zheng Z, Liu H, Wang L, Diao J, Wang P, Zhao G. Purification and characterization of a β-glucosidase from Aspergillus niger and its application in the hydrolysis of geniposide to genipin. Journal of Microbiology and Biotechnology 2014, 24(6): 788-794.
 
[70]  Lin J, Pillay B, Singh S. Purification and biochemical characteristics of β‐D‐glucosidase from a thermophilic fungus, Thermomyces lanuginosus–SSBP. Biotechnology and Applied Biochemistry 1999, 30(1): 81-87.
 
[71]  Bhat KM, Gaikwad JS, Maheshwari R. Purification and characterization of an extracellular β-glucosidase from the thermophilic fungus Sporotrichum thermophile and its influence on cellulase activity. Microbiology 1993, 139(11): 2825-2832.
 
[72]  Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q. Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microbial Cell Factories 2012, 11(1): 1.
 
[73]  Narasimha G, Sridevi A, Ramanjaneyulu G, Rajasekhar Reddy B. Purification and Characterization of β-Glucosidase from Aspergillus niger. International Journal of Food Properties 2016, 19(3): 652-661.
 
[74]  Park A-R, Hong JH, Kim J-J, Yoon J-J. Biochemical characterization of an extracellular β-glucosidase from the fungus, Penicillium italicum, isolated from rotten citrus peel. Mycobiology 2012, 40(3): 173-180.
 
[75]  Venturi LL, de Lourdes Polizeli M, Terenzi HF, dos Prazeres Melo Furriel R, Jorge JA. Extracellular β-D-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties. Journal of Basic Microbiology 2002, 42(1): 55.
 
[76]  De Palma-Fernandez E, Gomes E, Da Silva R. Purification and characterization of two β-glucosidases from the thermophilic fungusThermoascus aurantiacus. Folia Microbiologica 2002, 47(6): 685-690.
 
[77]  Ranjitha P, Karthy E, Mohankumar A. Purification and Characterization of the Lipase from Marine Vibrio fischeri. International Journal of Biology 2009, 1(2): 48.
 
[78]  Zaidi KU, Ali AS, Ali SA. Purification and characterization of melanogenic enzyme tyrosinase from button mushroom. Enzyme Research 2014, 2014.
 
[79]  Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P. Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 2013, 1: e46.
 
[80]  Saha BC, Freer SN, Bothast RJ. Production, purification, and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Applied and Environmental Microbiology 1994, 60(10): 3774-3780.
 
[81]  Hernández‐Guzmán A, Flores‐Martínez A, Ponce‐Noyola P, Villagómez‐Castro JC. Purification and characterization of an extracellular β‐glucosidase from Sporothrix schenckii. FEBS Open Bio 2016, 6(11): 1067-1077.
 
[82]  Bornhorst JA, Falke JJ. Purification of proteins using polyhistidine affinity tags. Methods in Enzymology 2000, 326: 245-254.
 
[83]  Chan CS, Sin LL, Chan K-G, Shamsir MS, Manan FA, Sani RK, Goh KM: Characterization of a glucose-tolerant β-glucosidase from Anoxybacillus sp. DT3-1. Biotechnology for Biofuels 2016, 9(1): 174.
 
[84]  Crespim E, Zanphorlin LM, de Souza FH, Diogo JA, Gazolla AC, Machado CB, Figueiredo F, Sousa AS, Nóbrega F, Pellizari VH: A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7. International Journal of Biological Macromolecules 2016, 82: 375-380.
 
[85]  Pei J, Pang Q, Zhao L, Fan S, Shi H. Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnology for Biofuels 2012, 5(1): 1.
 
[86]  Kalyani D, Lee K-M, Tiwari MK, Ramachandran P, Kim H, Kim I-W, Jeya M, Lee J-K. Characterization of a recombinant aryl β-glucosidase from Neosartorya fischeri NRRL181. Applied Microbiology and Biotechnology 2012, 94(2): 413-423.
 
[87]  Shipkowski S, Brenchley JE. Characterization of an unusual cold-active β-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Applied and Environmental Microbiology 2005, 71(8): 4225-4232.
 
[88]  Harper S, Speicher DW. Purification of proteins fused to glutathione S-tranferase. Methods in Molecular Biology (Clifton, NJ) 2011, 681: 259-280.
 
[89]  Chen S, Hong Y, Shao Z, Liu Z. A cold-active β-glucosidase (Bgl1C) from a sea bacteria Exiguobacterium oxidotolerans A011. World Journal of Microbiology and Biotechnology 2010, 26(8): 1427-1435.
 
[90]  Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko Y, Privalov PL, Anfinsen CB. The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Journal of Biological Chemistry 1993, 268(32): 24394-24401.
 
[91]  Xian L, Wang F, Luo X, Feng Y-L, Feng J-X. Purification and Characterization of a Highly Efficient Calcium-Independent α-Amylase from Talaromyces pinophilus 1-95. PloS one 2015, 10(3): e0121531.
 
[92]  Kamaruddin S, Bakar FDA, Illias R, Said M, Hassan O, Murad AMA. Overexpression, purification and characterization of Aspergillus niger Beta-Glucosidase in Pichia pastoris. Malaysian Applied Biology 2015, 44(1): 7-11.
 
[93]  Daroit DJ, Simonetti A, Hertz PF, Brandelli A. Purification and characterization of an extracellular beta-glucosidase from Monascus purpureus. Journal of Microbiology and Biotechnology 2008, 18(5): 933-941.
 
[94]  Elíades LA, Rojas NL, Cabello MN, Voget CE, Saparrat MCN. α‐L‐Rhamnosidase and β‐D‐glucosidase activities in fungal strains isolated from alkaline soils and their potential in naringin hydrolysis. Journal of Basic Microbiology 2011, 51(6): 659-665.
 
[95]  Ravindran C, Varatharajan GR, Karthikeyan A. Role of alkaline-tolerant fungal cellulases in release of total antioxidants from agro-wastes under solid state fermentation. 2011, BioResource. 6, 3142-3154.
 
[96]  An D-S, Cui C-H, Lee H-G, Wang L, Kim SC, Lee S-T, Jin F, Yu H, Chin Y-W, Lee H-K. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Applied and Environmental Microbiology 2010, 76(17): 5827-5836.
 
[97]  Zahoor S, Javed MM, Aftab MN, Ikram-ul-Haq. Cloning and expression of β-glucosidase gene from Bacillus licheniformis into E. coli BL 21 (DE3). Biologia 2011, 66(2): 213-220.
 
[98]  Hong M-R, Kim Y-S, Park C-S, Lee J-K, Kim Y-S, Oh D-K. Characterization of a recombinant β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. Journal of Bioscience and Bioengineering 2009, 108(1): 36-40.
 
[99]  Naz S, Ikram N, Rajoka M, Sadaf S, Akhtar M. Enhanced production and characterization of a β-glucosidase from Bacillus halodurans expressed in Escherichia coli. Biochemistry (Moscow) 2010, 75(4): 513-518.
 
[100]  Ma Z, Lan X, Tang J, Xu J, Xie J, Chen Q, Pan G, Li C, Zhou Z. Molecular cloning and characterization of a novel alkaline β-glucosidase encoding gene (kpYBDN) from Klebsiella pneumoniae, performing a conserved function in bacteria. International Journal of Agriculture and Biology 2015, 17(5): 983-989.
 
[101]  Saha BC, Bothast RJ: Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Applied and Environmental Microbiology 1996, 62(9): 3165-3170.
 
[102]  Rajoka M, Khan S, Latif F, Shahid R: Influence of carbon and nitrogen sources and temperature on hyperproduction of a thermotolerant β-glucosidase from synthetic medium by Kluyveromyces marxianus. Applied Biochemistry and Biotechnology 2004, 117(2): 75-92.
 
[103]  Iembo T, Da Silva R, Pagnocca F, Gomes E. Production, Characterization, and Properties of β-Glucosidase and β-Xylosidase from a Strain of Aureobasidium sp. Applied Biochemistry and Microbiology 2002, 38(6): 549-552.
 
[104]  Jiang C, Hao Z-Y, Jin K, Li S-X, Che Z-Q, Ma G-F, Wu B. Identification of a metagenome-derived β-glucosidase from bioreactor contents. Journal of Molecular Catalysis B: Enzymatic 2010, 63(1): 11-16.
 
[105]  Wang Q, Qian C, Zhang X-Z, Liu N, Yan X, Zhou Z. Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut. Enzyme and Microbial Technology 2012, 51(6): 319-324.
 
[106]  Lu J, Du L, Wei Y, Hu Y, Huang R. Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome. Acta Biochimica et Biophysica Sinica 2013, 45, 664-73.
 
[107]  Schröder C, Elleuche S, Blank S, Antranikian G. Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme and Microbial Technology 2014, 57: 48-54.
 
[108]  Uchiyama T, Miyazaki K, Yaoi K. Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. Journal of Biological Chemistry 2013, 288(25): 18325-18334.
 
[109]  Li Y, Liu N, Yang H, Zhao F, Yu Y, Tian Y, Lu X. Cloning and characterization of a new β-Glucosidase from a metagenomic library of Rumen of cattle feeding with Miscanthus sinensis. BMC Biotechnology 2014, 14(1): 1.
 
[110]  Del Pozo MV, Fernández-Arrojo L, Gil-Martínez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnology for Biofuels 2012, 5(1): 1.
 
[111]  Biver S, Stroobants A, Portetelle D, Vandenbol M. Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose. Journal of Industrial Microbiology & Biotechnology 2014, 41(3): 479-488.
 
[112]  Jiang C, Li S-X, Luo F-F, Jin K, Wang Q, Hao Z-Y, Wu L-L, Zhao G-C, Ma G-F, Shen P-H. Biochemical characterization of two novel β-glucosidase genes by metagenome expression cloning. Bioresource Technology 2011, 102(3): 3272-3278.
 
[113]  Mallerman J, Papinutti L, Levin L. Characterization of β-Glucosidase Produced by the White Rot Fungus Flammulina velutipes. Journal of Microbiology and Biotechnology 2015, 25(1): 57-65.
 
[114]  Dhake A, Patil M. Production of ß-Glucosidase by Penicillium purpurogenum. Brazilian Journal of Microbiology 2005, 36(2): 170-176.
 
[115]  Magalhaes P, Ferraz A, Milagres A. Enzymatic properties of two β‐glucosidases from Ceriporiopsis subvermispora produced in biopulping conditions. Journal of Applied Microbiology 2006, 101(2): 480-486.
 
[116]  Hassan N, Nguyen T-H, Intanon M, Kori LD, Patel BK, Haltrich D, Divne C, Tan TC: Biochemical and structural characterization of a thermostable β-glucosidase from Halothermothrix orenii for galacto-oligosaccharide synthesis. Applied Microbiology and Biotechnology 2015, 99(4): 1731-1744.
 
[117]  Chang KH, Jo MN, Kim K-T, Paik H-D. Purification and characterization of a ginsenoside Rb1-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239. International Journal of Molecular Sciences 2012, 13(9): 12140-12152.
 
[118]  Chen H-L, Chen Y-C, Lu M-YJ, Chang J-J, Wang H-TC, Ke H-M, Wang T-Y, Ruan S-K, Wang T-Y, Hung K-Y. A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnology for Biofuels 2012, 5(1): 1.
 
[119]  Jeya M, Joo A-R, Lee K-M, Tiwari MK, Lee K-M, Kim S-H, Lee J-K. Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology 2010, 86(5): 1473-1484.
 
[120]  Cristóbal HA, Schmidt A, Kothe E, Breccia J, Abate CM. Characterization of inducible cold-active β-glucosidases from the psychrotolerant bacterium Shewanella sp. G5 isolated from a sub-Antarctic ecosystem. Enzyme and Microbial Technology 2009, 45(6): 498-506.
 
[121]  Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK. Purification and Characterisation of an Extracellular β‐Glucosidase with Transglycosylation and Exo‐glucosidase Activities from Fusarium oxysporum. European Journal of Biochemistry 1994, 224(2): 379-385.
 
[122]  Riou C, Salmon J-M, Vallier M-J, Günata Z, Barre P. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase fromAspergillus oryzae. Applied and Environmental Microbiology 1998, 64(10): 3607-3614.
 
[123]  Spiridonov NA, Wilson DB. Cloning and biochemical characterization of BglC, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Current Microbiology 2001, 42(4): 295-301.
 
[124]  Lau ATY, Wong WKR. Purification and Characterization of a Major Secretory Cellobiase, Cba2, from Cellulomonas biazotea. Protein Expression and Purification 2001, 23(1): 159-166.
 
[125]  Kudo K, Watanabe A, Ujiie S, Shintani T, Gomi K. Purification and enzymatic characterization of secretory glycoside hydrolase family 3 (GH3) aryl β-glucosidases screened from Aspergillus oryzae genome. Journal of Bioscience and Bioengineering 2015, 120(6): 614-623.
 
[126]  Khairudin NBA, Mazlan NSF. Molecular Docking Study of Beta-Glucosidase with Cellobiose, Cellotetraose and Cellotetriose. Bioinformation 2013, 9(16): 813.
 
[127]  Rajoka MI, Idrees S, Ashfaq UA, Ehsan B, Haq A. Determination of Substrate Specificities Against β-Glucosidase A (BglA) from Thermotoga maritime: A Molecular Docking Approach. Journal of Microbiology and Biotechnology 2015, 25(1): 54-59.
 
[128]  Rani V, Mohanram S, Tiwari R, Nain L, Arora A. Beta-glucosidase: Key enzyme in determining efficiency of cellulase and biomass hydrolysis. Journal of Bioprocessing & Biotechniques 2015, 2015.
 
[129]  Sengupta S, Ghosh AK, Sengupta S. Purification and characterisation of a β-glucosidase (cellobiase) from a mushroom Termitomyces clypeatus. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1991, 1076(2): 215-220.
 
[130]  Santos F, Garcia NFL, da Paz MF, Fonseca GG, Leite RSR. Production and characterization of β-glucosidase from Gongronella butleri by solid-state fermentation. African Journal of Biotechnology 2016, 15(16): 633-641.
 
[131]  Saha BC, Bothast RJ. Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Applied and Environmental Microbiology 1996, 62(9): 3165-3170.
 
[132]  Rajasree KP, Mathew GM, Pandey A, Sukumaran RK. Highly glucose tolerant β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. Journal of Industrial Microbiology & Biotechnology 2013, 40(9): 967-975.
 
[133]  Yan T-R, Lin C-L. Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Bioscience, Biotechnology, and Biochemistry 1997, 61(6): 965-970.
 
[134]  Ramani G, Meera B, Vanitha C, Rajendhran J, Gunasekaran P. Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. Journal of Industrial Microbiology & Biotechnology 2015, 42(4): 553-565.
 
[135]  Wright RM, Yablonsky MD, Shalita ZP, Goyal A, Eveleigh D. Cloning, characterization, and nucleotide sequence of a gene encoding Microbispora bispora BglB, a thermostable beta-glucosidase expressed in Escherichia coli. Applied and Environmental Microbiology 1992, 58(11): 3455-3465.
 
[136]  Yang F, Yang X, Li Z, Du C, Wang J, Li S. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Applied Mcrobiology and Biotechnology 2015, 99(21): 8903-8915.
 
[137]  Jabbour D, Klippel B, Antranikian G. A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum. Applied Microbiology and Biotechnology 2012, 93(5): 1947-1956.
 
[138]  Zhao L, Xie J, Zhang X, Cao F, Pei J. Overexpression and characterization of a glucose-tolerant β-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. Journal of Molecular Catalysis B: Enzymatic 2013, 95: 62-69.
 
[139]  Fang Z, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y. Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. Journal of Microbiology and Biotechnology 2010, 20(9): 1351-1358.
 
[140]  Li G, Jiang Y, Fan X-j, Liu Y-h: Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresource Technology 2012, 123: 15-22.
 
[141]  Guo B, Amano Y, Nozaki K. Improvements in Glucose Sensitivity and Stability of Trichoderma reesei β-Glucosidase Using Site-Directed Mutagenesis. PloS one 2016, 11(1): e0147301.
 
[142]  Lundemo P, Adlercreutz P, Karlsson EN. Improved transferase/hydrolase ratio through rational design of a family 1 β-glucosidase from Thermotoga neapolitana. Applied and Environmental Microbiology 2013, 79(11): 3400-3405.
 
[143]  Wang L-X, Huang W. Enzymatic transglycosylation for glycoconjugate synthesis. Current Opinion in Chemical Biology 2009, 13(5): 592-600.
 
[144]  Zeuner B, Jers C, Mikkelsen JD, Meyer AS: Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural and Food Chemistry 2014, 62(40): 9615-9631.
 
[145]  Hays WS, VanderJagt DJ, Bose B, Serianni AS, Glew RH: Catalytic mechanism and specificity for hydrolysis and transglycosylation reactions of cytosolic β-glucosidase from guinea pig liver. Journal of Biological Chemistry 1998, 273(52): 34941-34948.
 
[146]  Li YK, Chir J, Chen FY. Catalytic mechanism of a family 3 beta-glucosidase and mutagenesis study on residue Asp-247. Biochemical Journal 2001, 355(Pt 3): 835-840.
 
[147]  Parry NJ, Beever, DE, Emyr O, Vandenberghe I, Van Beeumen J. Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochemical Journal 2001, 353(1): 117-127.
 
[148]  Kaur J, Chadha BS, Kumar BA, Kaur G, Saini HS. Purification and characterization of ß-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology 2007, 10(2): 260-270.
 
[149]  Pal S, Banik SP, Ghorai S, Chowdhury S, Khowala S. Purification and characterization of a thermostable intra-cellular β-glucosidase with transglycosylation properties from filamentous fungus Termitomyces clypeatus. Bioresource Technology 2010, 101(7): 2412-2420.
 
[150]  Deschrevel B, Vincent JC, Ripoll C, Thellier M. Thermodynamic parameters monitoring the equilibrium shift of enzyme‐catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent. Biotechnology and Bioengineering 2003, 81(2): 167-177.
 
[151]  Choi J-Y, Park A-R, Kim YJ, Kim J-J, Cha C-J, Yoon J-J. Purification and characterization of an extracellular beta-glucosidase produced by Phoma sp. KCTC11825BP isolated from rotten mandarin peel. Journal of Microbiology and Biotechnology 2011, 21(5): 503-508.
 
[152]  Mai Z, Yang J, Tian X, Li J, Zhang S. Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from a marine streptomycete. Applied Biochemistry and Biotechnology 2013, 169(5): 1512-1522.
 
[153]  Krisch J, Bencsik O, Papp T, Vágvölgyi C, Takó M. Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. Bioresource Technology 2012, 114: 555-560.
 
[154]  Ng IS, Li C-W, Chan S-P, Chir J-L, Chen PT, Tong C-G, Yu S-M, Ho T-HD. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology 2010, 101(4): 1310-1317.
 
[155]  Yang X, Ma R, Shi P, Huang H, Bai Y, Wang Y, Yang P, Fan Y, Yao B. Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides. PloS one 2014, 9(9): e106785.
 
[156]  Kuo L-C, Lee K-T. Cloning, expression, and characterization of two β-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto. Journal of Agricultural and Food Chemistry 2007, 56(1): 119-125.
 
[157]  Tajima K, Nakajima K, Yamashita H, Shiba T, Munekata M, Takai M. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769. DNA Research 2001, 8(6): 263-269.
 
[158]  Albaser A, Kazana E, Bennett MH, Cebeci F, Luang-In V, Spanu PD, Rossiter JT. Discovery of a Bacterial Glycoside Hydrolase Family 3 (GH3) β-Glucosidase with Myrosinase Activity from a Citrobacter Strain Isolated from Soil. Journal of Agricultural and Food Chemistry 2016, 64(7): 1520-1527.
 
[159]  Nijikken Y, Tsukada T, Igarashi K, Samejima M, Wakagi T, Shoun H, Fushinobu S. Crystal structure of intracellular family 1 β-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium. FEBS Letters 2007, 581(7): 1514-1520.
 
[160]  Hernández‐Guzmán A, Flores‐Martínez A, Ponce‐Noyola P, Villagómez‐Castro JC. Purification and characterization of an extracellular β‐glucosidase from Sporothrix schenckii. FEBS Open Bio 2016.
 
[161]  Nair A, Kuwahara A, Nagase A, Yamaguchi H, Yamazaki T, Hosoya M, Omura A, Kiyomoto K, Yamaguchi M-a, Shimoyama T. Purification, gene cloning, and biochemical characterization of a β-glucosidase capable of hydrolyzing sesaminol triglucoside from Paenibacillus sp. KB0549. PloS one 2013, 8(4): e60538.
 
[162]  Fang W, Song R, Zhang X, Zhang X, Zhang X, Wang X, Fang Z, Xiao Y. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. Journal of Agricultural and Food Chemistry 2014, 62(48): 11688-11695.
 
[163]  Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y. Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme and Microbial Technology 2010, 46(6): 444-449.
 
[164]  Dikshit R, Tallapragada P. Partial Purification and Characterization of β-glucosidase fromMonascus sanguineus. Brazilian Archives of Biology and Technology 2015, 58(2): 185-191.
 
[165]  Nazir A, Soni R, Saini H, Manhas RK, Chadha B. Regulation of expression of multiple of beta-glucosidases of Aspergillus terreus and their purification and characterization. Bioresources 2008, 4(1): 155-171.
 
[166]  Kwon K-S, Lee J, Kang HG, Hah YC. Detection of β-glucosidase activity in polyacrylamide gels with esculin as substrate. Applied and Environmental Microbiology 1994, 60(12): 4584-4586.
 
[167]  Qin Y, He H, Li N, Ling M, Liang Z. Isolation and characterization of a thermostable cellulase-producing Fusarium chlamydosporum. World Journal of Microbiology and Biotechnology 2010, 26(11): 1991-1997.
 
[168]  Dashtban M, Qin W. Overexpression of an exotic thermotolerant β-glucosidase in Trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microbial Cell Factories 2012, 11(1): 1.
 
[169]  Dan S, Marton I, Dekel M, Bravdo B-A, He S, Withers SG, Shoseyov O. Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus nigerβ-glucosidase. Journal of Biological Chemistry 2000, 275(7): 4973-4980.
 
[170]  Schmid G, Wandrey C. Purification and partial characterization of a cellodextrin glucohydrolase (β‐glucosidase) from Trichoderma reesei strain QM 9414. Biotechnology and Bioengineering 1987, 30(4): 571-585.
 
[171]  Chen H, Hayn M, Esterbauer H. Purification and characterization of two extracellular β-glucosidases from Trichoderma reesei. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1992, 1121(1): 54-60.
 
[172]  Singhania RR, Sukumaran RK, Rajasree KP, Mathew A, Gottumukkala L, Pandey A. Properties of a major β-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochemistry 2011, 46(7): 1521-1524.
 
[173]  Sonia K, Chadha B, Badhan A, Saini H, Bhat M. Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi. World Journal of Microbiology and Biotechnology 2008, 24(5): 599-604.
 
[174]  Decker C, Visser J, Schreier P. β-Glucosidase multiplicity from Aspergillus tubingensis CBS 643.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Applied Microbiology and Biotechnology 2001, 55(2): 157-163.
 
[175]  Ramani G, Meera B, Vanitha C, Rao M, Gunasekaran P. Production, purification, and characterization of a β-glucosidase of Penicillium funiculosum NCL1. Applied Biochemistry and Biotechnology 2012, 167(5): 959-972.
 
[176]  Verma A, Saini S, Nishad S, Kumar V, Singh S, Dubey A: Production, purification and characterization of beta-glucosidase from Bacillus subtilis strain PS isolated from sugarcane bagasse. Journal of Pure and Applied Microbiology 2013, 7(1): 803-810.
 
[177]  Ling H, Ge J, Ping W, Xu X. Fermentation optimization by response surface methodology for enhanced production of beta-glucosidase of Aspergillus niger HDF05. Chinese Journal of Biotechnology 2011, 27(3): 419-426.
 
[178]  Adrio JL, Demain AL. Genetic improvement of processes yielding microbial products. FEMS Microbiology Reviews 2006, 30(2): 187-214.
 
[179]  Cowan D. Industrial enzyme technology. Trends in Biotechnology 1996, 14(6): 177-178.
 
[180]  Chen P, Fu X, Ng TB, Ye X-Y. Expression of a secretory β-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization. Biotechnology Letters 2011, 33(12): 2475-2479.
 
[181]  Mushtaq A, Jamill A. Cloning of a β-glucosidase gene from thermophilic fungus Cheatomium thermophilum. Pakistan Journal Life and Social Science 2012, 10: 98-101.
 
[182]  Njokweni A, Rose S, Van Zyl W. Fungal β-glucosidase expression in Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology 2012, 39(10): 1445-1452.
 
[183]  Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L. Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Applied Microbiology and Biotechnology 2010, 86(1): 143-154.
 
[184]  Dashtban M, Qin W. Overexpression of an exotic thermotolerant beta-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microbial Cell Factories 2012, 11: 63.
 
[185]  Jun H, Kieselbach T, Jönsson LJ. Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microbial Cell Factories 2011, 10: 68-68.
 
[186]  Wang L, Ridgway D, Gu T, Moo-Young M. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnology Advances 2005, 23(2): 115-129.
 
[187]  Murray P, Aro N, Collins C, Grassick A, Penttilä M, Saloheimo M, Tuohy M. Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expression and Purification 2004, 38(2): 248-257.
 
[188]  Macauley‐Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast 2005, 22(4): 249-270.
 
[189]  Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology 2014, 98(12): 5301-5317.
 
[190]  Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y. Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular β-glucosidase I. Bioscience, Biotechnology, and Biochemistry 2009, 73(5): 1083-1089.
 
[191]  Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani Ji, Kawaguchi T, Morikawa Y. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β‐glucosidase 1 for efficient biomass conversion. Biotechnology and Bioengineering 2012, 109(1): 92-99.
 
[192]  Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y. Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters. Applied Microbiology and Biotechnology 2009, 82(5): 899-908.
 
[193]  Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ. Approaches to functional genomics in filamentous fungi. Cell Research 2006, 16(1): 31-44.
 
[194]  Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology 2014, 5: 172.
 
[195]  Cronan JE. Escherichia coli as an Experimental Organism. In: eLS. John Wiley & Sons, Ltd; 2001.
 
[196]  Khow O, Suntrarachun S. Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pacific Journal of Tropical Biomedicine 2012, 2(2): 159-162.
 
[197]  Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances 2009, 27(3): 297-306.
 
[198]  De Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microbial Cell Factories 2009, 8(1): 1.
 
[199]  Chang J, Park I-H, Lee Y-S, Ahn S-C, Zhou Y, Choi Y-L. Cloning, expression, and characterization of β-glucosidase from Exiguobacterium sp. DAU5 and transglycosylation activity. Biotechnology and Bioprocess Engineering 2011, 16(1): 97-106.
 
[200]  Zahoor S, Javed M, Aftab M. Cloning and expression of β-glucosidase gene from Bacillus licheniformis into E. coli BL 21 (DE3). Biologia 2011, 66(2): 213-220.
 
[201]  Koffi YG, Konan HK, Kouadio J, Dabonné S, Dué EA, Kouamé LP. Purification and biochemical characterization of beta-glucosidase from cockroach, Periplaneta americana. Journal of Animal and Plant Science 2012, 13: 1747-1757.
 
[202]  Qin Y, Zhang Y, He H, Zhu J, Chen G, Li W, Liang Z. Screening and Identification of a Fungal β-Glucosidase and the Enzymatic Synthesis of Gentiooligosaccharide. Applied Biochemistry and Biotechnology 2011, 163(8): 1012-1019.
 
[203]  Michlmayr H, Schümann C, Wurbs P, Barreira Braz da Silva NM, Rogl V, Kulbe KD, del Hierro AM. A β-glucosidase from Oenococcus oeni ATCC BAA-1163 with potential for aroma release in wine: Cloning and expression in E. coli. World Journal of Microbiology & Biotechnology 2010, 26(7): 1281-1289.
 
[204]  Pogorzelski E, Wilkowska A. Flavour enhancement through the enzymatic hydrolysis of glycosidic aroma precursors in juices and wine beverages: a review. Flavour and Fragrance Journal 2007, 22(4): 251-254.
 
[205]  Gueguen Y, Chemardin P, Janbon G, Arnaud A, Galzy P. A very efficient β-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. Journal of Agricultural and Food Chemistry 1996, 44(8): 2336-2340.
 
[206]  Song X, Xue Y, Wang Q, Wu X. Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. Journal of Agricultural and Food Chemistry 2011, 59(5): 1954-1961.
 
[207]  Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β‐glucosidase activity. FEBS Letters 1998, 436(1): 71-75.
 
[208]  Donkor ON, Shah NP. Production of β‐Glucosidase and Hydrolysis of Isoflavone Phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in Soymilk. Journal of Food Science 2008, 73(1): M15-M20.
 
[209]  Suetsugi M, Su L, Karlsberg K, Yuan Y-C, Chen S. Flavone and Isoflavone Phytoestrogens Are Agonists of Estrogen-Related Receptors11National Institutes of Health Grants ES08258 and CA44735. Molecular Cancer Research 2003, 1(13): 981-991.
 
[210]  Belboukhari M, Cheriti A, Belboukhari N. Structure-Antioxidant Activity Relationship of Some Flavonoids Isolated from Warionia saharae (Asteraceae). Asian Journal of Chemistry 2013, 25(9): 4723-4725.
 
[211]  Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal 2013, 2013.
 
[212]  Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 2013, 3(6): 439-459.
 
[213]  Yankep E, Njamen D, Fotsing MT, Fomum ZT, Mbanya J-C, Giner RM, Recio MC, Máñez S, Ríos JL. Griffonianone D, an Isoflavone with Anti-inflammatory Activity from the Root Bark of Millettia griffoniana 1. Journal of Natural Products 2003, 66(9): 1288-1290.
 
[214]  Thilakarathna SH, Rupasinghe HPV. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients 2013, 5(9): 3367-3387.
 
[215]  Shin K-C, Nam H-K, Oh D-K. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts. Journal of Agricultural and Food Chemistry 2013, 61(47): 11532-11540.
 
[216]  Schmidt S, Rainieri S, Witte S, Matern U, Martens S. Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Applied and Environmental Microbiology 2011, 77(5): 1751-1757.
 
[217]  White WLB, Arias-Garzon DI, McMahon JM, Sayre RT. Cyanogenesis in Cassava : The Role of Hydroxynitrile Lyase in Root Cyanide Production. Plant Physiology 1998, 116(4): 1219-1225.
 
[218]  Nzwalo H, Cliff J. Konzo: From Poverty, Cassava, and Cyanogen Intake to Toxico-Nutritional Neurological Disease. PLoS Neglected Tropical Diseases 2011, 5(6): e1051.
 
[219]  Maduagwu EN. Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by β-glucosidase and microbial activities. Toxicology Letters 1983, 15(4): 335-339.
 
[220]  Elliston A, Collins SRA, Wilson DR, Roberts IN, Waldron KW. High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresource Technology 2013, 134: 117-126.
 
[221]  Rosales-Calderon O, Trajano HL, Duff SJB. Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions. PeerJ 2014, 2: e402.
 
[222]  Rather MY, Mishra S. β-Glycosidases: An alternative enzyme based method for synthesis of alkyl-glycosides. Sustainable Chemical Processes 2013, 1(1): 1.
 
[223]  Niittynen L, Kajander K, Korpela R. Galacto-oligosaccharides and bowel function. Scandinavian Journal of Food & Nutrition 2007, 51(2): 62.
 
[224]  Intanon M, Arreola SL, Pham NH, Kneifel W, Haltrich D, Nguyen T-H. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiology Letters 2014, 353(2): 89-97.
 
[225]  Cai J-W, Lu Y-D, Ben X-M. Effects of infant formula containing galacto-oligosaccharides on the intestinal microflora in infants. Chinese Journal of Contemporary Pediatrics 2008, 10(5): 629-632.
 
[226]  Torres DPM, Gonçalves MdPF, Teixeira JA, Rodrigues LR. Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Comprehensive Reviews in Food Science and Food Safety 2010, 9(5): 438-454.
 
[227]  Nagayoshi E, Furuta H, Fujii K, Takii Y. Characterization of β-glucosidase produced from Aspergillus awamori MIBA335. Journal of Biological Macromolecule 2011, 3(11): 69-82.
 
[228]  Gao L, Gao F, Zhang D, Zhang C, Wu G, Chen S. Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresource Technology 2013, 147: 658-661.
 
[229]  Ng I-S, Li C-W, Chan S-P, Chir J-L, Chen PT, Tong C-G, Yu S-M, Ho T-HD. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology 2010, 101(4): 1310-1317.
 
[230]  Yan Q, Zhou X-W, Zhou W, Li X-W, Feng M-Q, Zhou P. Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces Bainier. Journal of Microbiology and Biotechnology 2008, 18(6): 1081-1089.
 
[231]  El-Ahmady El-Naggar N, Haroun S, Abd ElRazak A, A Owis E, Sherief A. Purification and Characterization of β-Glucosidase Produced by Aspergillus terreus Under Solid State Fermentation. Current Biotechnology 2015, 4(3): 380-386.
 
[232]  Ašić A, Bešić L, Muhović I, Dogan S, Turan Y. Purification and Characterization of β-Glucosidase from Agaricus bisporus (White Button Mushroom). The Protein Journal 2015, 34(6): 453-461.
 
[233]  Muensean K, Kim S. Purification and characterization of β-glucosidase produced by Trichoderma citrinoviride cultivated on microalga Chlorella vulgaris. Applied Biochemistry and Microbiology 2015, 51(1): 102-107.
 
[234]  Saibi W, Amouri B, Gargouri A. Purification and biochemical characterization of a transglucosilating β-glucosidase of Stachybotrys strain. Applied Microbiology and Biotechnology 2007, 77(2): 293-300.
 
[235]  Su J-H, Xu J-H, Yu H-L, He Y-C, Lu W-Y, Lin G-Q. Properties of a novel β-glucosidase from Fusarium proliferatum ECU2042 that converts ginsenoside Rg 3 into Rh 2. Journal of Molecular Catalysis B: Enzymatic 2009, 57(1): 278-283.
 
[236]  Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA, Furriel RPM. Purification and biochemical properties of a glucose-stimulated β-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. The Journal of Microbiology 2010, 48(1): 53-62.
 
[237]  Anil N, Nutan M, Susan L, Digambar VG. Purification and characterization of β-glucosidase from Penicillium janthinellum mutant EU2D-21. Current Biotechnology 2017, 6: 1-8.
 
[238]  Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q. Characterization of a thermostable b-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X-33. Microbial Cell Factories 2012, 11(25): 1-15.
 
[239]  Li X, Pei J, Wu G, Shao W. Expression, Purification and Characterization of a Recombinant β-Glucosidase from Volvariella Volvacea. Biotechnology Letters 2005, 27(18): 1369-1373.
 
[240]  Sørensen A, Ahring BK, Lübeck M, Ubhayasekera W, Bruno KS, Culley DE, Lübeck PS. Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus. Canadian Journal of Microbiology 2012, 58(9): 1035-1046.
 
[241]  Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L. A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expression and Purification 2009, 67(2): 61-69.
 
[242]  Ramachandran P, Tiwari MK, Singh RK, Haw J-R, Jeya M, Lee J-K: Cloning and characterization of a putative β-glucosidase (NfBGL595) from Neosartorya fischeri. Process Biochemistry 2012, 47(1): 99-105.
 
[243]  Lee KW, Kim JH. Purification and characterization of beta-glucosidase from Weissella cibaria 37. Journal of Microbiology and Biotechnology 2012, 22(12): 1705-1713.
 
[244]  Wang L, Liu Q-M, Sung B-H, An D-S, Lee H-G, Kim S-G, Kim S-C, Lee S-T, Im W-T. Bioconversion of ginsenosides Rb 1, Rb 2, Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. Journal of Biotechnology 2011, 156(2): 125-133.
 
[245]  Tao Y-L, Yang D-H, Zhang Y-T, Zhang Y, Wang Z-Q, Wang Y-S, Cai S-Q, Liu S-L. Cloning, expression, and characterization of the β-glucosidase hydrolyzing secoisolariciresinol diglucoside to secoisolariciresinol from Bacteroides uniformis ZL1. Applied Microbiology and Biotechnology 2014, 98(6): 2519-2531.
 
[246]  Pei J, Pang Q, Zhao L, Fan S, Shi H: Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnology for Biofuels 2012, 5(31): 1-10.
 
[247]  Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL, Hofemeister J. Genes encoding two different beta-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Applied and Environmental Microbiology 1997, 63(10): 3902-3910.
 
[248]  Choi IS, Wi SG, Jung SR, Patel DH, Bae H-J. Characterization and application of recombinant β-glucosidase (BglH) from Bacillus licheniformis KCTC 1918. Journal of Wood Science 2009, 55(5): 329-334.
 
[249]  Xu H, Xiong A-S, Zhao W, Tian Y-S, Peng R-H, Chen J-M, Yao Q-H. Characterization of a glucose-, xylose-, sucrose-, and d-galactose-stimulated β-glucosidase from the alkalophilic bacterium Bacillus halodurans C-125. Current Microbiology 2011, 62(3): 833-839.
 
[250]  Uchiyama T, Yaoi K, Miyazaki K. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome. Frontiers in Microbiology 2015, 6(548).
 
[251]  Mai Z, Su H, Zhang S. Characterization of a Metagenome-Derived β-Glucosidase and Its Application in Conversion of Polydatin to Resveratrol. Catalysts 2016, 6(3): 35.