Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: https://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2014, 2(6), 266-272
DOI: 10.12691/jaem-2-6-1
Open AccessArticle

Bacterial Diversity in Sea Ice from the Southern Ocean and the Sea of Okhotsk

Torahiko Okubo1, Yuika Tosaka1, Toyotaka Sato1, Masaru Usui1, Chie Nakajima2, Yasuhiko Suzuki2, Satoshi Imura3 and Yutaka Tamura1,

1Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan

2Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan

3National Institute of Polar Research, Tachikawa, Tokyo, Japan

Pub. Date: October 30, 2014

Cite this paper:
Torahiko Okubo, Yuika Tosaka, Toyotaka Sato, Masaru Usui, Chie Nakajima, Yasuhiko Suzuki, Satoshi Imura and Yutaka Tamura. Bacterial Diversity in Sea Ice from the Southern Ocean and the Sea of Okhotsk. Journal of Applied & Environmental Microbiology. 2014; 2(6):266-272. doi: 10.12691/jaem-2-6-1

Abstract

In order to reveal the diversity of sea ice bacterial communities in polar and sub-polar regions, we investigated 2 drifting ice floes, one from the Australian side of the Southern Ocean and the other from the Sea of Okhotsk. We extracted bacterial DNA from sea ice and constructed 221 16S rDNA clone libraries including 109 clones from the Antarctic sea ice and 112 from the Okhotsk sea ice. The phylogenetic analysis of 16S rDNA sequences showed that Roseobacter and Sulfitobacter (Alphaproteobacteria), Psychrobacter, Halomonas, and Pseudoalteromonas (Gammaproteobacteria) were frequent in the Antarctic sea ice; Colwellia, Psychromonas, and Glaciecola (Gammaproteobacteria) and Polaribacter (Bacteroidetes) were major genera in the Okhotsk sea ice. While Alphaproteobacteria and Gammaproteobacteria were abundant in both samples, Bacteroidetes were detected only in the Okhotsk sea ice. Comparing the bacterial diversity of our samples with that of other studies, bacterial communities in sea ice were similar to one another at the phylum level, whereas their populations were quite different at the genus level. We also tried to detect antimicrobial and heavy metal resistance genes in our samples but didn’t identified. Our results provide additional information about the bacterial communities in sea ice.

Keywords:
16S rDNA-based analysis bacterial diversity sea ice Sea of Okhotsk Southern Ocean

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Maranger, R., Bird, D.F., Juniper, S.K., Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T., Canada. Mar. Ecol. Prog. Ser. 1994; 111: 121-127.
 
[2]  von Quillfeldt, C.H., Ambrose Jr., W.G., Clough, L.M., High number of diatom species in first-year ice from the Chukchi Sea. Polar Biol. 2003; 26 (12): 806-818.
 
[3]  Collins, R.E., Rocap, G., Deming, J.W., Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ. Microbiol. 2010; 12 (7): 1828-1841.
 
[4]  Junge, K., Eicken, H., Deming, J.W., Bacterial activity at -2 to -20ºC in Arctic wintertime sea ice. Appl. Environ. Microbiol. 2004; 70 (1): 550-557.
 
[5]  Mock, T., Thomas, D.N., Recent advances in sea-ice microbiology. Environ. Microbiol. 2005; 7 (5): 605-619.
 
[6]  Delille, D., Basseres, A., Dessommes, A., Seasonal variation of bacteria in sea ice contaminated by diesel fuel and dispersed crude oil. Microb. Ecol. 1997; 33(2): 97-175.
 
[7]  Delille, D., Delille, E., Distribution of enteric bacteria in Antarctic seaweter surrounding the Dumont d’Urville permanent station (Adelie Land). Mar. Pollut. Bull. 2003; 46 (9): 1179-1183.
 
[8]  Murray, A.E., Grzymski, J.J., Diversity and genomics of Antarctic marine micro-organisms. Philos. Trans. R. Soc. 2007; 29: 2259-2271.
 
[9]  De Souza, M.-J., Nair, S., Loka Bharathi, P.A., Chandramohan, D., Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology, 2006; 15(4): 379-384.
 
[10]  Miller, R.V., Gammon, K., Day, M.J., Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Can. J. Microbiol. 2009; 55: 37-45.
 
[11]  Segawa, T., Takeuchi, N., Rivera, A., Yamada, A., Yoshimura, Y., Barcaza, G., Shinbori, K., Motoyama, H., Kohshima, S., Ushida, K., Distribution of antibiotic resistance genes in glacier environments. Environ. Microbiol. Reports. 2013; 5(1): 127-134.
 
[12]  Bowman, J.P., McCammon, S.A., Brown, M.V., Nichols, D.S., McMeekin, T.A., Diversity of psychrophilic bacteria in antarctic sea ice. Appl. Environ. Microbiol. 1997; 63(8): 3068-3078.
 
[13]  Brown, M.V., Bowman, J.P., A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol., 2001; 35: 267-275.
 
[14]  Brinkmeyer, R., Knittel, K., Jürgens, J., Weyland, H., Amann, R., Helmke, E., Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 2003; 69 (11): 6610-6619.
 
[15]  Bano, N., Hollibaugh, J.T., Phylogenetic composition of bacterioplankton assemblages in Arctic ocean. Appl. Environ. Microbiol. 2002; 68 (2): 505-518.
 
[16]  Staley, J.T., Gosink, J.J., Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 1999; 53: 189-215.
 
[17]  Mock, T., Meiners, K.M., Giesenhagen, H.C., Bacteria in sea ice and underlying brackish water at 54º 26’ 50” N (Baltic Sea, Kiel Bight). Mar. Ecol. Prog. Ser. 1997; 158: 23-40.
 
[18]  Monfort, P., Demers, S., Levasseur, M., 2000. Bacterial dynamics in first year sea ice and underlying seawater of Saroma-ko Lagoon (Sea of Okhotsk, Japan) and resolute passage (High Canadian Arctic): inhibitory effects of ice algae on bacterial dynamics. Can. J. Microbiol. 2000; 46 (7): 623-632.
 
[19]  Christner, B.C., Mosley-Thompson, E., Thompson, L.G., Zagorodnov, V., Sandman, K., Reeve, J.N., Recovery and identification of viable bacteria immured in glacial ice. Icarus, 2000; 144: 479-485.
 
[20]  Spindler, M., A comparison of Arctic and Antarctic sea ice and the effects of different properties on sea ice biota. Geological History of the Polar Oceans: Arctic Versus Antarctic, 1990; pp. 173-186.
 
[21]  Newby, D.T., Reed, D.W., Petzke, L.M., Igoe, A.L., Delwiche, M.E., Roberto, F.F., McKinley, J.P., Whiticar, M.J., Colwell, F.S., Diversity of methanotroph communities in a basalt aquifer. FEMS Microbiol. Ecol. 2004; 48 (3): 333-344.
 
[22]  Zhao, Y., Park, S., Kreiswirth, B.N., Ginocchio, C.C., Veyret, R., Laayoun, A., Troesch, A., Perlin, D.S., 2009. A rapid real-time nucleic acid sequence-based amplification (NASBA)-molecular beacon platform to detect fungal and bacterial bloodstream infections. J. Clin. Microbiol. 2009; 47 (7): 2067-2078.
 
[23]  Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011; 28(10): 2731-2739.
 
[24]  Dutka-Malen, S., Evers, S., Courvalin, S., 1995. Detection of glycopeptides resistance genotypes and identification of the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995; 33 (1): 24-27.
 
[25]  Cattoir, V., Poirel, L., Rotimi, V., Soussy, C.-J., Nordmann, P., Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother. 2001; 60 (2): 394-397.
 
[26]  Lanz, R., Kuhnert, P., Boerlin, P., Antimicrobial resistance and resistant gene determinants in clinical Escherichia coli from defferent animal species in Switzerland. Vet. Microbiol. 2003; 91: 73-84.
 
[27]  Yoo, M.H., Huh, M.D., Kim, E.H., Lee, H.H., Jeong, H.D., Characterization of chloramphenicol acetyltransferase gene by multiplex polymerase chain reaction in multidrug-resistant strains isolated from aquatic environments. Aquaculture, 2003; 217: 11-21.
 
[28]  Jun, L.J., Jeong, J.B., Huh, M.D., Chung, J.K., Choi, D.L., Lee, C.H., Jeong, H.D., Detection of tetracycline-resistance determinants by multiplex polymerase chain reaction in Edwardsiella tarda isolated from fish farms in Korea. Aquaculture, 2004; 240: 89-110.
 
[29]  Kim, S.R., Nonaka, L., Suzuki, S., Occurence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol. Lett. 2004; 237: 147-156.
 
[30]  Kojima, A., Ishii, Y., Ishihara, K., Esaki, H., Asai, T., Oda, C., Tamura, Y., Takahashi, T., Yamaguchi, K., Extended-spectrum-beta-lactamase-producing Escherichia coli strains isolated from farm animals from 1999 to 2002 : Report from the Japanese Veterinary Antimicrobial Resistance Monitoring Program. Antimicrob. Agents Chemother. 2005; 49: 3533-3537.
 
[31]  Malhotra-Kumar, S., Lammens, C., Piessens, J., Goossens, H., Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in Streptococci. Antimicrob. Agents Chemother. 2005; 49 (11): 4798-4800.
 
[32]  Xu, L., Ensor, V., Gossain, S., Nye, K., Hawkey, P., Rapid and simple detection of blaCTX-M genes by multiplex PCR assay. J. Med. Microbiol. 2005; 54: 1183-1187.
 
[33]  Moniri, R., Farahani, R.K., Shajari, G., Shirazi, M.H., Ghasemi, A., Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp. with emergence of multidrug-resistant strains. Iran. J. Public Heal. 2010; 39: 63-68.
 
[34]  Liebert, C.A., Wireman, J., Smith, T., Summers, A.O., Phylogeny of mercury resistance (mer) operons of Gram-negative bacteria isolated from the fecal flora of primates. Appl. Environ. Microbiol. 1997; 63 (3): 1066-1076.
 
[35]  Oger, C., Berthe, T., Quillet, L., Barray, S., Chiffoleau, J.-F., Petit, F., Estimation of the abundance of the cadmium resistance gene cadA in microbial communities in polluted estuary water. Res. Microbiol. 2001; 152 (7): 671-678.
 
[36]  Hasman, H., Aarestrup, F.M., tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferablity, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother. 2002; 46 (5): 1410-1416.