Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: https://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2014, 2(5), 212-219
DOI: 10.12691/jaem-2-5-3
Open AccessArticle

Biodiversity Characterization of Bacterial and Fungal Isolates from Gold Electroplating Industry Effluents

Hemamalini Varadarajan1 and Sneha Shikha1,

1Microbiology Department, V.E.S College of Arts, Science and Commerce, Mumbai, India

Pub. Date: July 14, 2014

Cite this paper:
Hemamalini Varadarajan and Sneha Shikha. Biodiversity Characterization of Bacterial and Fungal Isolates from Gold Electroplating Industry Effluents. Journal of Applied & Environmental Microbiology. 2014; 2(5):212-219. doi: 10.12691/jaem-2-5-3

Abstract

There has been a tremendous increase in the number and types of various industries, with all industrial operations generating wastes in one form or the other. Electroplating sector contributes a major part in deteriorating the local environment at a massive scale due to the persistent accumulation of heavy metals in the environment. Nature of the microbial biodiversity of industrial effluents, in particular, the effluent from the electroplating industry remains largely uncharacterized. In this study, a unique set of chemo-heterotrophic organisms comprising of nine bacteria and eleven fungi were isolated from the effluents of a gold electroplating industry effluent, located in Mumbai, India. The culture isolates were identified by biochemical tests and partial 16S rRNA and 18S rRNA gene sequence matches. Among the cultures isolated and identified, four were novel and hitherto unreported species of bacteria and ten were new strains of fungi. The sequence data of novel isolates obtained were submitted at NCBI, GenBank to acquire unique accession numbers subsequent to which new strain designations were given to them by the authors. The bacterial isolates were designated as Staphylococcus sp. ss-1, Achromobacter sp. ss-2, Macrococcus sp. ss-4 and Bacillus sp. ss-6. New strain designations were assigned to the fungal isolates as Talaromyces marneffei strain GEF-1, Penicillium pinophilum strain GEF-2, Curvularia lunata strain GEF-3, Aspergillus tamarii strain GEF-4, Aspergillus tamarii strain GEF-5, Aspergillus sydowii strain GEF-6, Aspergillus flavus strain GEF-7, Aspergillus niger strain GEF-8, Aspergillus awamori strain GEF-9 and Cladosporium sphaerospermum strain GEF-11. The study highlights the presence of new isolates endowed with metal resistance genes possibly for multiple heavy metal resistance to be able to survive in several heavy metal polluted environment. Indigenous microorganisms isolated from the electroplating effluents may be studied to examine their potential to produce enzymes, and bioactive compounds for application in agricultural, pharmaceutical, industrial, environmental and medical sciences.

Keywords:
Microbial Biodiversity gold electroplating industry electroplating effluent novel species heavy metal pollution heavy metal resistance

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Alam, Z. M., and S. Ahmad. Toxic chromate reduction by resistant and sensitive bacteria isolated from tannery effluent contaminated soil. Ann. Microbiol. 62 (1): 113-121. 2012.
 
[2]  Baba, T., K. Kuwahara-Arai, I. Uchiyama, F. Takeuchi, T. Ito, and K. Hiramatsu. Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, reflecting the ancestral genome of the human-pathogenic Staphylococci. J. Bacteriol. 191 (4): 1180-1190. 2009.
 
[3]  Basheer, S. M., , , , , and . Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment. New Biotechnol. 28 (6): 627-638. 2011.
 
[4]  Buommino, E., V. Tirino, A. De Filippis, F. Silvestri, R. Nicoletti, M. L. Ciavatta, G. Pirozzi, and M. A. Tufano. 3-O-methylfunicone, from Penicillium pinophilum, is a selective inhibitor of breast cancer stem cells. Cell Proliferation. 44 (5): 401-409. 2011.
 
[5]  Claassen, S. L., J. M. Reese, V. Mysliwiec, and S. D. Mahlen. Achromobacter xylosoxidans infection presenting as a pulmonary nodule mimicking cancer. J. Clin. Microbiol. 49 (7): 2751-2754. 2011.
 
[6]  Costa, A. M., W. X. Ribeiro, E. Kato, A. R. G. Monteiro, and R. M. Peralta. Production of tannase by Aspergillus tamarii in submerged cultures. Braz. arch. biol. technol. 51 (2): 399-404. 2008.
 
[7]  Ezzouhri, L. C., E. Moya, M. Espinola, and K. Lairini. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr. J. Microbiol. Res. 3 (2): 035-04. 2009.
 
[8]  Faryal, R., and A. Hameed. Isolation and characterization of various fungal strains from textile effluent for their use in bioremediation. Pak. J. Bot., 37 (4): 1003-1008, 2005.
 
[9]  Gadd, G. M. and A. J. Griffiths. Microorganisms and heavy metal. Microbiol. Ecol., 4, 303-317. 1978.
 
[10]  Ganguli, A., and A.K. Tripathi. Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Lett. Appl. Microbiol. 28 (1): 76-80. 1999.
 
[11]  Hamayun, M., S. F. Khan, A. L. Khan, G. Rehman, Y-H Kim, I. Iqbal, J. Hussain, , and . Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia. 102 (5): 989-995. 2010.
 
[12]  Hassen, A., N. Saidi, M. Cherif and A. Boudabous. Resistance of environmental bacteria to heavy metals. Bioresource Technology 64: 7-15. 1998.
 
[13]  Jamaluddin, H., D. Mad Zaki, and Z. Ibrahim. Isolation of metal tolerant bacteria from polluted wastewater. Pertanika J. Trop. Agric. Sci. 35 (3): 647-662. 2012.
 
[14]  Jarup, L. Hazards of heavy metal contamination. British Medical Bulletinvol, vol. 68, p. 167-182. 2003.
 
[15]  Kalia, A. and R. P. Gupta. Conservation and Utilization of Microbial Diversity. NBA Scientific Bulletin Number-1, National Biodiversity Authority, Chennai, TamilNadu.1-40. 2005.
 
[16]  Madhu, K. M., P. S. Beena, and M. Chandrasekaran. Extracellular β-gluco-sidase production by a marine Aspergillus sydowii BTM FS 55 under solid state fermentation using statistical experimental design. Biotech. Bioproc. Eng. 14 (1): 457-466. 2009.
 
[17]  Malekzadeh, F., A. Farazmand, H. Ghafourian, M. Shahamat, M. Levin,and R. R. Colwell. Uranium accumulation by a bacterium isolated from electroplating effluent. World J. Microbiol. Biotechnol. 18: 295-302. 2002.
 
[18]  Manefield, M., R. I. Griffiths, M. B. Leigh, R. Fisher, and S. W. Andrew. Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environ. Microbiol.7: 715-722. 2005.
 
[19]  Ojo, O. A., and B.A. Oso. Biodegradation of synthetic detergents in wastewater. Afr. J. Biotech. 8 (6): 1090-1109. 2009.
 
[20]  Oves, M., S.K. Mohammed, and A. Zaidi. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated North Indian soil. Saudi J. of Biol.
 
[21]  Parameswari, E., A. Lakshmanan, and T. Thilagavathi. 2010. Biosorption and metal tolerance potential of filamentous fungi isolated from metal polluted ecosystem. Electron. J. Environ. Agric. Food Chem. 9 (4): 664-671.
 
[22]  Raja, C. E., and G. S. Selvam. Plasmid profile and curing analysis of Pseudomonas aeruginosa as metal resistant. Int. J. Environ. Sci. Tech. 6 (2): 259-266. 2009.
 
[23]  Rani, A., S. Porwal, R. Sharmaa, A. Kapley, H. J. Purohit, V. C. Kalia. Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour. Technol.
 
[24]  Rizner, T. L., and M. H. Wheeler.Melanin biosynthesis in the fungus Curvularia lunata (teleomorph Cochliobolus lunatus) . Can. J. Microbiol. 49: 110-119. 2003.
 
[25]  Rizner, T. L., G. Moeller, H. H. Thole, M. Zakelj-Mavric, and J. Adamsky. A novel 17β-Hydroxy steroid dehydrogenase in the fungus Cochliobolus lunatus: New insights into the evolution of steroid-hormone signaling. Biochem. J. 337: 425-431. 1999.
 
[26]  Salunkhe, B. R., S. V. Patil, C. D. Patil, and B. K. Salunkhe. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol. Res. 109 (3): 823-831. 2011.
 
[27]  Santini, J. M., L. I. Sly; A. Wen; D. Comrie; P. Durand; J. M. Macy. New Arsenite-Oxidizing Bacteria Isolated from Australian Gold Mining Environments—Phylogenetic Relationships', Geomicrobiology Journal, 19 (1): 67-76. 2002.
 
[28]  Sarkar, A. K., S. Roy, A. Pal, S. Pakrashi, P. K. Mahra, S. Sahoo, A. Deb, M. Mishra, S. K. Sen, A. R. Thakur, and S. Ray Chaudhuri. Microbial biodiversity screening for metal accumulators from mineral ore rich site in Andhra Pradesh, India. OnLine J. Biol. Sci. 8 (2): 32-40. 2008.
 
[29]  Satchanska, G., E. Pentcheva, R. Atanasova, V. Groudeva, R. Trifonova, and E. Golovinsky. Microbial diversity in heavy-metal polluted waters. Biotechnol. & Biotech. Equipment. 19: 61-67. 2005.
 
[30]  Sharma D., C. Gupta, S. Aggarwal and N. Nagpal Pigment extraction from fungus for textile dyeing. Indian J Fiber and Textile Res. 37: 68-73. 2012.
 
[31]  Stanley, J. Biodiversity of Microbial life. Wiley-Liss, New York, NY. 2002.
 
[32]  Vanittanakom, N., R. C. Chester, M. C. Fisher, and T. Sirisanthana. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin. Microbiol. Rev. 19 (1): 95-110. 2006.
 
[33]  Vijayakumar, S., P. Senthil, S. Jeyachandran, and C. Manoharan. Microbial diversity in rubber industry effluent. Int. J. Pharm. Biol. Sci. 2: 123-131. 2012.