[1] | Thapa, S., et al., In ovo delivery of CpG DNA reduces avian infectious laryngotracheitis virus induced mortality and morbidity. Viruses, 2015. 7(4): p. 1832-52. |
|
[2] | McGeoch, D.J., F.J. Rixon, and A.J. Davison, Topics in herpesvirus genomics and evolution. Virus research, 2006. 117(1): p. 90-104. |
|
[3] | Fahey, K., T. Bagust, and J. York, Laryngotracheitis herpesvirus infection in the chicken: the role of humoral antibody in immunity to a graded challenge infection. Avian Pathology, 1983. 12(4): p. 505-514. |
|
[4] | Rodríguez-Avila, A., et al., Replication and transmission of live attenuated infectious laryngotracheitis virus (ILTV) vaccines. Avian diseases, 2007. 51(4): p. 905-911. |
|
[5] | García, M., et al., Genomic sequence analysis of the United States infectious laryngotracheitis vaccine strains chicken embryo origin (CEO) and tissue culture origin (TCO). Virology, 2013. 440(1): p. 64-74. |
|
[6] | Kingham, B.F., et al., The genome of herpesvirus of turkeys: comparative analysis with Marek’s disease viruses. Journal of General Virology, 2001. 82(5): p. 1123-1135. |
|
[7] | Kirkpatrick, N.C., et al., Differentiation of infectious laryngotracheitis virus isolates by restriction fragment length polymorphic analysis of polymerase chain reaction products amplified from multiple genes. Avian diseases, 2006. 50(1): p. 28-33. |
|
[8] | Patronov, A. and I. Doytchinova, T-cell epitope vaccine design by immunoinformatics. Open biology, 2013. 3(1): p. 120139. |
|
[9] | Reche, P.A., et al., Peptide-based immunotherapeutics and vaccines. Journal of immunology research, 2014. 2014. |
|
[10] | Flower, D.R., Designing immunogenic peptides. Nature chemical biology, 2013. 9(12): p. 749-753. |
|
[11] | Bande, F., et al., Prediction and in silico identification of novel B-cells and T-cells epitopes in the S1-spike glycoprotein of M41 and CR88 (793/B) infectious bronchitis virus serotypes for application in peptide vaccines. Advances in bioinformatics, 2016. |
|
[12] | Zheng, J., et al., In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein. Viruses, 2017. 9(5): p. 112. |
|
[13] | Ali, S.A., Y.A. Almofti, and K.A. Abd-elrahman, Immunoinformatics Approach for Multiepitopes Vaccine Prediction against Glycoprotein B of Avian Infectious Laryngotracheitis Virus. Advances in Bioinformatics, 2019. 2019. |
|
[14] | National Center for Biotechnology Information (NCBI): http://www.ncbi.nlm.nih.gov/protein/. Accessed 19 Oct. 2018 |
|
[15] | Hall, T., BioEdit: an important software for molecular biology. GERF Bull Biosci, 2011. 2(1): p. 60-61. |
|
[16] | Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6:molecular evolutionary genetics analysis version 6.0.MolBiolEvol. 2013; 30: 2725-2729. |
|
[17] | Vita, R., et al., The immune epitope database (IEDB) 3.0. Nucleic acids research, 2014. 43(D1): p. D405-D412. |
|
[18] | Larsen, J.E., O. Lund, and M. Nielsen, Improved method for predicting linear B-cell epitopes. Immunome research, 2006. 2(1): p. 2. |
|
[19] | Emini, E.A., et al., Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of virology, 1985. 55(3): p. 836-839. |
|
[20] | Kolaskar, A. and P.C. Tongaonkar, A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS letters, 1990. 276(1-2): p. 172-174. |
|
[21] | Morshed, M.M., et al., Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV. Bioinformation, 2014. 10(8): p. 533. |
|
[22] | Nielsen, M. and O. Lund, NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC bioinformatics, 2009. 10(1): p. 296. |
|
[23] | Wu, S. and Y. Zhang, MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins: Structure, Function, and Bioinformatics, 2008. 72(2): p. 547-556. |
|
[24] | Källberg, M., et al., Template-based protein structure modeling using the RaptorX web server. Nature protocols, 2012. 7(8): p. 1511. |
|
[25] | Peng, J. and J. Xu, RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins: Structure, Function, and Bioinformatics, 2011. 79(S10): p. 161-171. |
|
[26] | Peng, J. and J. Xu, A multiple-template approach to protein threading. Proteins: Structure, Function, and Bioinformatics, 2011. 79(6): p. 1930-1939. |
|
[27] | Chan, W.M., et al., User’s manual for Chimera grid tools, version 1.8. NASA Ames Research Center, URL: http://people. nas. nasa. gov/~ rogers/cgt/doc/man. html [cited 19 July 2006], 2003. |
|
[28] | Maupetit, J., P. Derreumaux, and P. Tufféry, A fast method for large-scale De Novo peptide and miniprotein structure prediction. Journal of computational chemistry, 2010. 31(4): p. 726-738. |
|
[29] | Beaufays, J., et al., In silico predictions of 3D structures of linear and cyclic peptides with natural and non-proteinogenic residues. Journal of Peptide Science, 2012. 18(1): p. 17-24. |
|
[30] | Shen, Y., et al., Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of chemical theory and computation, 2014. 10(10): p. 4745-4758. |
|
[31] | Duhovny, D., R. Nussinov, and H.J. Wolfson. Efficient unbound docking of rigid molecules. in International workshop on algorithms in bioinformatics. 2002. Springer. |
|
[32] | Schneidman-Duhovny, D., et al., PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic acids research, 2005. 33(suppl_2): p. W363-W367. |
|
[33] | Andrusier, N., R. Nussinov, and H.J. Wolfson, FireDock: fast interaction refinement in molecular docking. Proteins: Structure, Function, and Bioinformatics, 2007. 69(1): p. 139-159. |
|
[34] | Hasan, A., M. Hossain, and J. Alam, A computational assay to design an epitope-based Peptide vaccine against Saint Louis encephalitis virus. Bioinformatics and Biology insights, 2013. 7: p. BBI. S13402. |
|
[35] | Koch, M., et al., Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity, 2007. 27(6): p. 885-899. |
|
[36] | Alberts, B., et al., Molecular Biology of the Cell 4th Edition: International Student Edition. 2002, Routledge. |
|
[37] | Nielsen, M., et al., MHC class II epitope predictive algorithms. Immunology, 2010. 130(3): p. 319-328. |
|
[38] | Nielsen, M., et al., Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics, 2004. 20(9): p. 1388-1397. |
|