International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2017, 5(1), 9-15
DOI: 10.12691/ijp-5-1-2
Open AccessArticle

Structural-Parametric Model Electromagnetoelastic Actuator Nanodisplacement for Mechatronics

Sergey Mikhailovich Afonin1,

1Department of Intellectual Technical Systems, National Research University of Electronic Technology (MIET), Moscow, Russia

Pub. Date: February 09, 2017

Cite this paper:
Sergey Mikhailovich Afonin. Structural-Parametric Model Electromagnetoelastic Actuator Nanodisplacement for Mechatronics. International Journal of Physics. 2017; 5(1):9-15. doi: 10.12691/ijp-5-1-2

Abstract

Electromagnetoelastic actuator have been used successfully to nanodisplacement for mechatronics systems in nanotechnology, electronic engineering, microelectronics, nanobiology, power engineering, astronomy. Linear structural-parametric model, parametric structural schematic diagram, transfer functions of the simple electromagnetoelastic actuator nanodisplacement for the mechatronics systems are obtained. For calculation of the mechatronics system with piezoactuator the parametric structural schematic diagram and the transfer functions of the piezoactuator are obtained. A generalized parametric structural schematic diagram and transfer functions of the piezoactuator are constructed. This work describes the linear structural-parametric model of the simple piezoactuator for the mechatronic in the static and dynamic operation modes in contrast solving its electrical equivalent circuit.

Keywords:
electromagnetoelastic actuators structural-parametric model piezoactuator deformation nanodisplacement transfer functions

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Przybylski J. “Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation,” Engineering structures, 2015, 84, 140-151.
 
[2]  Afonin, S.M. “Solution of the wave equation for the control of an elecromagnetoelastic transduser,” Doklady mathematics, 73, 2, 307-313, 2006.
 
[3]  Afonin, S.M. “Structural parametric model of a piezoelectric nanodisplacement transduser,” Doklady physics, 53, 3, 137-143, 2008.
 
[4]  Ueda J., Secord T., Asada H. H. “Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms,” IEEE/ASME Transactions on Mechatronics, 2010, 15, 5, 770-782.
 
[5]  Karpelson, M., Wei, G.-Y., Wood, R.J. “Driving high voltage piezoelectric actuators in microrobotic applications,” Sensors and Actuators A: Physical, 2012, 176, 78-89.
 
[6]  Schultz J., Ueda J., Asada H. Cellular Actuators. Oxford: Butterworth-Heinemann Publisher, 2017. 382 p.
 
[7]  Uchino, K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher, 1997, 347 p.
 
[8]  Gu G.-Y., Yang M.-J., Zhu L.-M. “Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model,” Review of scientific instruments, 2012, 83, 6, 065106.
 
[9]  Talakokula V., Bhalla S., Ball R.J., Bowen C.R., Pesce G.L., Kurchania R.,. Bhattacharjee B, Gupta A., Paine K. “Diagnosis of carbonation induced corrosion initiation and progressionin reinforced concrete structures using piezo-impedance transducers,” Sensors and Actuators A: Physical, 2016, 242, 79-91.
 
[10]  Yang, Y. , Tang, L. “Equivalent circuit modeling of piezoelectric energy harvesters,” Journal of intelligent material systems and structures, 20, 18, 2223-2235, 2009.
 
[11]  Cady, W.G. Piezoelectricity an introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company, 1946, 806 p.
 
[12]  Physical Acoustics: Principles and Methods. () Vol.1. Part A. Methods and Devices. Ed.: W. Mason. New York: Academic Press, 1964, 515 p.
 
[13]  Zwillinger, D. Handbook of Differential Equations. Boston: Academic Press, 1989, 673 p.
 
[14]  Afonin, S.M. “Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement, Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. I.A. Parinov. New York: Nova Science, 2015, pp. 225-242.
 
[15]  Afonin, S.M. “Generalized parametric structural model of a compound elecromagnetoelastic transduser,” Doklady physics, 50, 2, 77-82, 2005.
 
[16]  Afonin, S.M. “Parametric structural diagram of a piezoelectric converter. Mechanics of solids, 37, 6, 85-91, 2002.
 
[17]  Afonin, S.M. “Parametric block diagram and transfer functions of a composite piezoelectric transducer,” Mechanics of solids, 39, 4, 119-127, 2004.
 
[18]  Afonin, S.M. “Static and dynamic characteristics of a multy-layer electroelastic solid,” Mechanics of solids, 44, 6, 935-950, 2009.
 
[19]  Afonin, S.M. “Design static and dynamic characteristics of a piezoelectric nanomicrotransducers,” Mechanics of solids, 45, 1, 123-132, 2010.
 
[20]  Afonin, S.M. “Electroelasticity problems for multilayer nano- and micromotors,” Russian engineering research, 31, 9, 842-847, 2011.
 
[21]  Afonin, S.M. “Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser,” Doklady mathematics, 74, 3, 943-948, 2006.
 
[22]  Afonin, S.M. “Generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micromovement control systems,” Journal of computer and systems sciences international, 45, 2, 317-325, 2006.
 
[23]  Afonin, S.M. “Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect,” Journal of computer and systems sciences international, 54, 3, 424-439, 2015.
 
[24]  Springer Handbook of Nanotechnology. Ed. by B. Bhushan. Berlin, New York: Springer, 2004, 1222 p.
 
[25]  Encyclopedia of Nanoscience and Nanotechnology. Ed. by H. S. Nalwa. Calif.: American Scientific Publishers. 10 Volumes, 2004.