International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2015, 3(4), 139-149
DOI: 10.12691/ijp-3-4-1
Open AccessArticle

Appraisal of a New Gravitational Constant

Sandro Antonelli1,

151A, S.P. 57, Accesso a M., 03017 Morolo Italy

Pub. Date: May 21, 2015

Cite this paper:
Sandro Antonelli. Appraisal of a New Gravitational Constant. International Journal of Physics. 2015; 3(4):139-149. doi: 10.12691/ijp-3-4-1

Abstract

The need of extending the theory of relativity has led M.Tailherer to the hypothesis of a new fundamental equation and constant, embodying in a unique wave equation for the graviton the link between gradient of curvature and deformation of metric. As direct continuation of a preceding work, here a new assessment of the constant S in the Vortex Theory of gravitation is given in a more direct approach than 1st approximation yielding S =(2.5±1.2)E-19 m-1. Issues are concerned fitting by Maple four binary systems data, also allowing to assign a meaningful inertial mass to the graviton (5.5±2.6)E-61 Kg confirming known heuristic bounding. In Appendix an easy way of getting the vortex’s gradient formula is shown along with the whole action of the model and the description of the tide effect on a test mass with respect to a x polarized gravitational wave in the case of an asymmetric source.

Keywords:
Alternative theories to General Relativity (TGR) Gravitational waves Vorticity Tensor Binary Star Systems massive gravity. PACS. 04.30

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Antonelli,S., “Outstanding Outcomes from a Recent Theory of Gravity”, International Journal of Physics, Sciepub, 2,6,2014, pp.267-276, 2014. [Online] Available: http://www.sciepub.com/portal/downloads?doi=10.12691/ijp-2-6-10&filename=ijp-2-6-10.pdf.
 
[2]  Landau, L., Lifchitz, E., The Classical Theory of Fields, vol.2, sec.82, Butterworth-Heinemann, 1975.
 
[3]  Loinger,A., “Gravitational waves are fictitious entities II”, http://xxx.lanl.gov/abs/astro-ph/9904207 , 1999.
 
[4]  Ferrarese,G., Stazi, L., Lezioni di Meccanica Razionale , vol 2 chap.VIII, §1.10, Pitagora Eds, Bologna, 1989 .
 
[5]  Ferrarese, G., Bini, G.., Introduction to relativistic continuum mechanics, Springer, Heidelberg, 2008.
 
[6]  Tailherer, M., “A Critical Reading on the Theory of Gravitational Wave Propagation”, Scientific Journals, Journal of Physical & Natural Sciences 1, 1 , 2007.
 
[7]  Gershtein, S.S., Logunov, A.A.,Mestvirishvili, M.A., “The upper limit on the graviton mass”, 1997. [Online]. Available: arXiv:hep-th/9711147.
 
[8]  Visser, M., “Mass for the Graviton” ,1998, arXiv:gr-qc/9705051.
 
[9]  Ohanian, H.C., Ruffini, R., Gravitation and Spacetime, Chap.5 §5.2, W.W. Norton & Company, 1994.
 
[10]  Sokolnikoff, I.S., Tensor Analysis, Chap. 6, §105, Wiley, New York, 1951.
 
[11]  Finn, L.S., Sutton, P.J., “Bounding the mass of the graviton using binary pulsar observations”, Phys. Rev. D65, 044022, 2002. [Online]. Available: arXiv:gr-qc/0109049.
 
[12]  Will, C.,W., “Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. Phys. Rev. D57, 2061. (1998) [Online]. Available: arXiv:gr-qc/9709011.
 
[13]  Maggiore, M., Gravitational waves, vol. 1, §6.2.3, OUP Oxford, 2007.
 
[14]  Weisberg, J.M.,Taylor, J.H., “Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis”,2004 . [Online] . Available: arXiv:astro-ph/0407149 v1
 
[15]  Antonelli. S., “Importance of the Gauss' 2nd differential form in Relativity”, viXra e-Print archive, 2013, [Online]. Available: http://www.vixra.org/abs/1310.0190.
 
[16]  Kramer, M., et al.,“Tests of general relativity from timing the double pulsar”, 2006, [Online]. Available: arXiv:0609417 [astro-ph].
 
[17]  Wolszczan, A., “A nearby 37.9-ms radio pulsar in a relativistic binary system”, Nature, 350, 688 ,1991.
 
[18]  Blanchet,L.,Post-Newtonian theory and the two-body problem”, 2010. [Online]. Available: arXiv.org/gr-qc/0907.3596
 
[19]  Jacoby, B. A, et al. “Measurement of orbital decay in the double neutron star binary B2127+11C”, The Astroph. J., 644, L113-L116, 2006. [Online]. Available: arXiv:astro-ph/0605375.