[1] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161. |
|
[2] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and Topology of Nuclei.” International Journal of Physics 2, no. 1 (2014): 15-22. |
|
[3] | Zhiliang Cao, Henry Gu Cao, Wenan Qiang, Unified Field Theory and Topology of Atom, American Journal of Modern Physics. Vol. 4, No. 4, 2015, pp. 1-7. |
|
[4] | Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298. |
|
[5] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Hierarchical Universe.” International Journal of Physics 1.6 (2013): 162-170. |
|
[6] | Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12. |
|
[7] | Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109. |
|
[8] | Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127. |
|
[9] | Mehul Malik, Mohammad Mirhosseini, Martin P. J. Lavery, Jonathan Leach, Miles J. Padgett & + et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 2014, 5. |
|
[10] | H. T. Yuan, M. B. Saeed, K. Morimoto, H. Shimotani, K. Nomura, R. Arita, Ch. Kloc, N. Nagaosa, Y. Tokura, and Y. Iwasa. Zeeman-Type Spin Splitting Controlled with an External Electric Field. Nat. Phys. 2013, 9, 563-569. |
|
[11] | A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel. “Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field.” Phys. Rev. B 84, 165325-2011, October. |
|
[12] | D. Kekez, A. Ljubiic & B. A. Logan. An upper limit to violations of the Pauli exclusion principle. Nature 348, 224-224 (1990). |
|
[13] | Zoran Hadzibabic. Quantum gases: The cold reality of exclusion. Nature Physics 6, 643-644 (2010). |
|
[14] | June Kinoshita. Roll Over, Wolfgang? Scientific American 258, 25-28 (1988). |
|
[15] | Tony Sudbery. Exclusion principle still intact. Nature 348, 193-194 (1990). |
|
[16] | R. C. Liu, B. Odom, Y. Yamamoto & S. Tarucha. Quantum interference in electron collision. Nature 391, 263-265 (1998). |
|
[17] | George Gamow. The Exclusion Principle. Scientific American 201, 74-86 (1959). |
|
[18] | B. Poirier, Chem. Phys. 370, 4 (2010). |
|
[19] | A. Bouda, Int. J. Mod. Phys. A 18, 3347 (2003). |
|
[20] | P. Holland, Ann. Phys. 315, 505 (2005). |
|
[21] | P. Holland, Proc. R. Soc. London, Ser. A 461, 3659 (2005). |
|
[22] | G. Parlant, Y.-C. Ou, K. Park, and B. Poirier, “Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities,” Comput. Theor. Chem. (in press). |
|
[23] | D. Babyuk and R. E. Wyatt, J. Chem. Phys. 124, 214109 (2006). |
|
[24] | Jeremy Schiff and Bill Poirier. Quantum mechanics without wavefunctions. THE JOURNAL OF CHEMICAL PHYSICS 136, 031102 (2012). |
|
[25] | J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1932). |
|
[26] | D. Bohm, Phys. Rev. 85, 166 (1952). |
|
[27] | P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, England, 1993). |
|
[28] | R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005). |
|
[29] | H. Everett III, Rev. Mod. Phys. 29, 454 (1957). |
|
[30] | M. F. González, X. Giménez, J. González, and J. M. Bofill, J. Math. Chem. 43, 350 (2008). |
|
[31] | Oganessian, Yu. T. et al. (2002). Results from the first 249Cf+48Ca experiment. JINR Communication (JINR, Dubna). http://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf. |
|
[32] | Nash, Clinton S. (2005). “Atomic and Molecular Properties of Elements 112, 114, and 118”. Journal of Physical Chemistry A 109 (15): 3493-3500. |
|
[33] | K.Umemoto, S.Saito, Electronic configurations of superheavy elements, Journal of the physical society of Japan, vol.65, no.10, 1996, p.3175-3179. |
|
[34] | Hartmut M. Pilkuhn, Relativistic Quantum Mechanics, Springer Verlag, 2003. |
|
[35] | E.Loza, V.Vaschenko. Madelung rule violation statistics and superheavy elements electron shell prediction. http://arxiv-web3.library.cornell.edu/abs/1206.4488 |
|
[36] | Froese Fischer, Charlotte (1987). “General Hartree-Fock program”. Computer Physics Communication 43 (3): 355-365. |
|
[37] | Abdulsattar, Mudar A. (2012). “SiGe superlattice nanocrystal infrared and Raman spectra: A density functional theory study”. J. Appl. Phys. 111 (4): 044306. |
|
[38] | Hinchliffe, Alan (2000). Modelling Molecular Structures (2nd ed.). Baffins Lane, Chichester, West Sussex PO19 1UD, England: John Wiley & Sons Ltd. p. 186. |
|
[39] | Szabo, A.; Ostlund, N. S. (1996). Modern Quantum Chemistry. Mineola, New York: Dover Publishing. |
|
[40] | Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Englewood Cliffs, New Jersey: Prentice Hall. p. 403. |
|
[41] | Christophe L. Guillaume, Eugene Gregoryanz, Olga Degtyareva, Malcolm I. McMahon, Michael Hanfland, Shaun Evans, Malcolm Guthrie, Stanislav V. Sinogeikin & H-K. Mao. Cold melting and solid structures of dense lithium. Nature Physics 7, 211-214 (2011). |
|
[42] | Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141-144 (1999). |
|
[43] | Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174-178 (2000). |
|
[44] | Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20?K. Nature 419, 597-599 (2002). |
|
[45] | Tamblyn, I., Raty, J. & Bonev, S. Tetrahedral clustering in molten lithium under pressure. Phys. Rev. Lett. 101, 075703 (2008). |
|
[46] | Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186-189 (2009). |
|
[47] | Lazicki, A., Fei, Y. & Hemley, R. High pressure differential thermal analysis measurements of the melting curve of lithium. Solid State Commun. 150, 625-627 (2010). |
|
[48] | Hernández, E., Rodriguez-Prieto, A., Bergara, A. & Alfè, D. First-principles simulations of lithium melting: Stability of the bcc phase close to melting. Phys. Rev. Lett. 104, 185701 (2010). |
|
[49] | Datchi, F., Loubeyre, P. & LeToullec, R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys. Rev. B 61, 6535-6546 (2000). |
|
[50] | Gregoryanz, E., Goncharov, A. F., Matsuishi, K., Mao, H. K & Hemley, R. J. Raman spectroscopy of hot dense hydrogen. Phys. Rev. Lett. 90, 175701 (2003). |
|
[51] | Börje Johansson, Wei Luo,Sa Li & Rajeev Ahuja. Cerium; Crystal Structure and Position in The Periodic Table. Scientific Reports 4, Article number: 6398. |
|
[52] | Koskenmaki, D. C. & Gschneidner, K. A., Jr Cerium in: Handbook on the physics and chemistry of rare earths, Vol. 1, eds Gschneidner K. A., & Eyring L. (Amsterdam, North-Holland), pp 337-377 (1978). |
|
[53] | Johansson, B. The a-? transition in cerium is a Mott transition. Philos. Mag. 30, 469-482 (1974). |
|
[54] | Gustafson, D. R., McNutt, J. D. & Roellig, L. O. Positron annihilation in ?- and a-cerium. Phys. Rev. 183, 435-440 (1969). |
|
[55] | Kornstädt, U., Lässer, R. & Lengeler, B. Investigation of the?-a phase transition in cerium by Compton scattering. Phys. Rev. B 21, 1898-1901 (1980). |
|
[56] | Rueff, J. P. et al. F-state occupancy at the ?-a phase transition of Ce-Th and Ce-Sc alloys. Phys. Rev. Lett. 93, 067402 (2004). |
|
[57] | Loa, I., Isaev, E. I., McMahon, M. I., Kim, D. Y. & Johansson, B. Lattice dynamics and superconductivity in cerium at high pressure. Phys. Rev. Lett. 108, 045502 (2012). |
|
[58] | Lashley, J. C. et al. Tricritical phenomena at the? right arrow a transition in Ce0.9-xLaxTh0.1 alloys. Phys. Rev. Lett. 97, 235701 (2006). |
|
[59] | Allen, J. W. & Martin, R. M. Kondo volume collapse and the ? right arrow a transition in Cerium. Phys. Rev. Lett. 49, 1106-1110 (1982). |
|
[60] | Szotek, Z., Temmerman, W. M. & Winter, H. Self-interaction corrected, local spin density description of the? right arrow a transition in Ce. Phys. Rev. Lett. 72, 1244-1247 (1994). |
|
[61] | Peng Tan, Ning Xu & Lei Xu. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Physics 10, 73-79 (2014). |
|
[62] | Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22, 289-330 (1897). |
|
[63] | Alexander, S. & McTague, J. Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702-705 (1978). |
|
[64] | Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714-2717 (1995). |
|
[65] | Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932-9947 (1996). |
|
[66] | Shen, Y. C. & Oxtoby, D. W. bcc symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density functional theory. Phys. Rev. Lett. 77, 3585-3588 (1996). |
|
[67] | Auer, S. & Frenkel, D. Crystallization of weakly charged colloidal spheres: A numerical study. J. Phys. Condens. Matter 14, 7667-7680 (2002). |
|
[68] | Moroni, D., ten Wolde, P. R. & Bolhuis, P. G. Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005). |
|
[69] | Russo, J. & Tanaka, H. Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model. Soft Matter 8, 4206-4215 (2012). |
|
[70] | Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340-342 (1986). |
|