International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2025, 13(2), 30-40
DOI: 10.12691/ijp-13-2-2
Open AccessArticle

Collapse of Special Relativity in the Two-dimensional Space

Maciej Rybicki1,

1Independent Researcher, Kraków, Poland

Pub. Date: March 26, 2025

Cite this paper:
Maciej Rybicki. Collapse of Special Relativity in the Two-dimensional Space. International Journal of Physics. 2025; 13(2):30-40. doi: 10.12691/ijp-13-2-2

Abstract

Special Theory of Relativity (STR) is tested by a thought experiment involving the Lorentz contraction of two one-dimensional objects interrelating in the two-dimensional space. The assumed two-dimensionality is due to observation performed in the third inertial frame of reference, noncollinear with the previous two. The detailed analysis leads to the conclusion that STR cannot be consistently applied to the spacetime with two and, by extension, three spatial dimensions; therefore, fails as a theory applicable to the real world. While the consequences of this finding are developed in the author’s previous papers, this study focuses on the thought experiment and respective theoretical background.

Keywords:
Special relativity Lorentz contraction Lorentz transformation Tangherlini transformation Preferred frame Quantum gravity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Rybicki, M. (2019) Failure of Special Relativity as a Theory Applied to More than One of Spatial Dimensions, Int. J. Th. Math. Phys., Vol. 9 (3), 81-96.
 
[2]  Rybicki, M. (2024) Why and How Special Relativity Fails in the Second Spatial Dimension? An Introduction to the Preferred Frame Theory, International Journal of Physics, Vol. 12 (4), 175-195.
 
[3]  Szabó, L.E. (2005) Does Special Relativity Theory Tell us Anything New About Space and Time? arXiv:physics/0308035v5.
 
[4]  Szabó, L.E. (2011) Lorentzian Theories vs. Einsteinian Special Relativity – a Logico-empiricist Reconstruction, in: Der Wiener Kreis in Ungarn (The Vienna Circle in Hungary), Vol. 16, Springer, Vienna.
 
[5]  Lorentz, H.A. (1892) The Relative Motion of the Earth and Ether, in: Collected Papers, Vol. IV, the Hague 1937, 219-223.
 
[6]  Lorentz, H.A. (1899) Simplified Theory of Electrical and Optical Phenomena in Moving Systems, Proceedings of the Netherlands Academy of Arts and Science, Vol. 2, 427-442.
 
[7]  Tangherlini, F.R. (1961) Nuovo Cimento Suppl. Vol. 20, 351.
 
[8]  Selleri, F. (1997) Noninvariant One-way Velocity of Light and Locally Equivalent Reference Frames, Found. Phys. Lett. Vol. 10, 73-83.
 
[9]  Einstein, A. (1905) On the Electrodynamics of Moving bodies, Annalen der Physik, Vol. 17, 891-921, https://www.fourmilab.ch.
 
[10]  Einstein, A., (1905) Ist die Trägheit eines Körpers von Seinem Energienhalt Abhängig? (Does the Inertia of a Body Depend Upon its Energy-content?), Annalen der Physik, Vol. 18 (13), 639-643, https://www.fourmilab.ch.
 
[11]  Bell, J. S. (1987) How to Teach Special Relativity, in: Speakable and Unspeakable in Quantum Mechanics: papers on quantum philosophy, Cambridge University Press.
 
[12]  Reichenbach, H. (1930) The Philosophy of Space and Time, Dover, New York.
 
[13]  Mansouri, R.; Sexl, R.U. (1977) A Test Theory of Special Relativity I: Simultaneity and Clock Synchronization, General Relativity and Gravitation, Vol. 8 (7), 497-513.
 
[14]  (a) Rybicki, M. (2016) Mansouri-Sexl Theory: The Question of Equivalence Between Special Relativity and Ether Theories, Progress in Physics, Vol. 12 (1), 89-92. http://www.ptep-online.com>2016. (b) Rybicki, M. (2016) Errata to “Mansouri-Sexl Theory: The Question of Equivalence Between Special Relativity and Ether Theories”, Progress in Physics, Vol. 12 (3), 204. http://www.ptep-online.com>2016.
 
[15]  Rybicki, M. (2021) Inconsistency of Minkowski Space Endowed with More than One of Spatial Dimensions, obtainable on request at: maciej.rybicki@icloud.com.
 
[16]  Hafele, J.C.; Keating, R.E. (1972) Around-the-World Atomic Clocks: Predicted Relativistic Time Gains, Science, Vol. 177, 4044, 166-168.
 
[17]  Minkowski, H. (1909) Raum und Zeit (Space and Time), Physikalische Zeitschrift, 10, 75-88.
 
[18]  Pais, A. (1982) Subtle is the Lord: The Science and Life of Albert Einstein, Sec. 7c, Oxford University Press.
 
[19]  Thomas, L.H. (1926) Motion of the Spinning Electron, Nature, Vol. 117, 2945, 514.
 
[20]  Rhodes, J.A.; Semon, M.D. (2005) Relativistic Velocity Space, Wigner rotation and Thomas precession, Am. J. Phys. Vol. 72 (7) 943-960, arXiv:gr-qc/0501070v1.
 
[21]  Larmor, J. (1900) Aether and Matter, Cambridge University Press.