[1] | M. A. Lampert, Mobile and immobile effective-mass particle complexes in nonmetallic solids, Phys. Rev. Lett. 1, 450 (1958). |
|
[2] | A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Z6lyomi, N. D. Drummond, and V. Fal'ko, kp theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Mater. 2, 022001 (2015). |
|
[3] | G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, B. Urbaszek, Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 21001 (2018). |
|
[4] | K. F. Mak, K. He, C. Lee, et al, Tightly bound trion in monolayer MoS2, Nat. Mater. 12, 207 (2013). |
|
[5] | H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2, 57 (2015). |
|
[6] | T. C. Berkelbach and D. R. Reichman, Optical and excitonic properties of atomically thin transition-metal dichalcogenides, Annu. Rev. Condens. Matter Phys. 2018. 9, 379-96 (2018). |
|
[7] | M. V. Durnev and M. M. Glazov, Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides, Phys. Usp. 61, 825 (2018). |
|
[8] | R. Ya. Kezerashvili, Few-body systems in condensed matter physics, Few- Body Syst. 60, 52 (2019). |
|
[9] | M. A. Semina and R. A. Suris, Localized excitons and trions in semiconductor nanosystems, Phys. Usp. 65, 111 (2022). |
|
[10] | R. Ya. Kezerashvili and Sh. M. Tsiklauri, Trion and biexciton in monolayer transition metal dichogenides, Few- Body Syst. 58, 18 (2017). |
|
[11] | I. Filikhin, R. Ya. Kezerashvili, and B. Vlahovic, On binding energy of trions in bulk materials, Phys. Lett. A 382, 787 (2018). |
|
[12] | K. Mohseni, M. R. Hadizadeh, T. Frederico, D. R. da Costa, and A. J. Chaves, Trion clustering structure and BE in two-dimensional semiconductor materials: Faddeev equations approach, Phys. Rev. B 107, 165427 (2023). |
|
[13] | R. Ya. Kezerashvili, S. M. Tsiklauri, and A. Dublin, Trions in two-dimensional monolayers within the hyperspherical harmonics method: application to transition metal dichalcogenides, Phys Rev. B 109, 085406 (2024). |
|
[14] | A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, and D. Akinwande, Buckled two -dimensional Xene sheets, Nat. Mater.16, 163 (2017). |
|
[15] | J. Zheng, Y. Xiang, C. Li, R. Yuan, F. Chi, and Y. Guo, All-optically controlled topological transistor based on Xenes, Phys. Rev. Appl. 14, 034027 (2020). |
|
[16] | L. Matthes, O. Pulci, and F. Bechstedt, Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene, J. Phys.: Condens. Matter 25, 395305 (2013). |
|
[17] | A. Acun, B. Poelsema, H. J. W. Zandvliet, and R. van Gastel, The instability of silicene on Ag (111), Appl. Phys. Lett. 103, 263119 (2013). |
|
[18] | L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, Silicene field- effect transistors operating at room temperature, Nat. Nanotechnol. 10, 227 (2015). |
|
[19] | B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, and G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene, Appl. Phys. Lett. 96, 183102 (2010). |
|
[20] | P. De Padova, C. Quaresima, C. Ottaviani, P. M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, and G. Le Lay, Evidence of graphene-like electronic signature in silicene nanoribbons, Appl. Phys. Lett. 96, 261905 (2010). |
|
[21] | N. D. Drummond, V. Zólyomi, and V. I. Fal'ko, Electrically tunable band gap in silicene, Phys. Rev. B 85,075423 (2012). |
|
[22] | M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett. 109, 055502 (2012). |
|
[23] | M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. L. Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys 16, 095002 (2014). |
|
[24] | A. J. Mannix, B. Kiraly, M. C. Hersam, and N. P. Guisinger, Synthesis and chemistry of elemental 2D materials, Nat. Rev. Chem. 1, 0014 (2017). |
|
[25] | C. Grazianetti, C. Martella, and A. Molle, The Xenes generations: a taxonomy of epitaxial single-element 2D materials, Phys. Status Solidi RRL 14, 1900439 (2020). |
|
[26] | D. Di Sante, X. Wu, M. Fink, W. Hanke, and R. Thomale, Triplet superconductivity in the Dirac semimetal germanene on a substrate, Phys. Rev. B 99, 201106 (2019). |
|
[27] | L. Li, X. Wang, X. Zhao, and M. Zhao, Moiré superstructures of silicene on hexagonal boron nitride: A first- principles study, Phys. Lett. A 377, 2628 (2013). |
|
[28] | A. I. Khan, T. Chakraborty, N. Acharjee, and S. Subrina, Stanene-hexagonal boron nitride heterobilayer: structure and characterization of electronic property, Sci. Rep. 7, 16347 (2017). |
|
[29] | S. Saxena, R. P. Chaudhary, and S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin, Sci. Rep. 6, 31073 (2016). |
|
[30] | M. Ezawa, Quantum Hall effects in silicene, J. Phys. Soc. Jpn. 81, 064705 (2012). |
|
[31] | R. Ya. Kezerashvili and A. Spiridonova, Effects of parallel electric and magnetic fields on Rydberg excitons in buckled two- dimensional materials, Phys. Rev. B 103, 165410 (2021). |
|
[32] | F. Bechstedt, L. Matthes, P. Gori, and O. Pulci, Infrared absorbance of silicene and germanene, Appl. Phys. Lett. 100, 261906 (2012). |
|
[33] | L. Stille, C. J. Tabert, and E. J. Nicol, Optical signatures of the tunable band gap and valley-spin coupling in silicene, Phys. Rev. B 86, 195405 (2012). |
|
[34] | M. Fadaie, N. Shahtahmassebi, and M. R. Roknabad, Effect of external electric field on the electronic structure and optical properties of stanene, Opt. Quantum Electron. 48, 440 (2016). |
|
[35] | D. Muoi, N. N. Hieu, C. V. Nguyen, B. D. Hoi, H. V. Nguyen, N. D. Hien, N. A. Poklonski, S. S. Kubakaddi, and H. V. Phuc, Magneto-optical absorption in silicene and germanene induced by electric and Zeeman fields, Phys. Rev. B 101, 205408 (2020). |
|
[36] | S. Chowdhury and D. Jana, A theoretical review on electronic, magnetic and optical properties of silicene, Rep. Prog. Phys. 79, 126501 (2016). |
|
[37] | X. Zhai, Y.-T. Wang, R. Wen, S.-X. Wang, Y. Tian, X. Zhou, W. Chen, and Z. Yang, Valley-locked thermospin effect in silicene and germanene with asymmetric magnetic field induced by ferromagnetic proximity effect, Phys. Rev. B 97, 085410 (2018). |
|
[38] | A. Zhao and B. Wang, Two-dimensional graphene-like Xenes as potential topological materials, APL Mater. 8, 030701 (2020). |
|
[39] | V. Y. Tsaran and S. G. Sharapov, Landau levels and magnetic oscillations in gapped Dirac materials with intrinsic Rashba interaction, Phys. Rev. B 90, 205417 (2014). |
|
[40] | C.-H. Chen, W.-W. Li, Y.-M. Chang, C.-Y. Lin, S.-H. Yang, Y. Xu, and Y.-F. Lin, Negative-differential-resistance devices achieved by band-structure engineering in silicene under periodic potentials, Phys. Rev. Appl. 10, 044047 (2018). |
|
[41] | J.-K. Lyu, S.-F. Zhang, C.-W. Zhang, and P.-J.Wang, Stanene: a promising material for new electronic and spintronic applications, Ann. Phys. (Berlin, Ger.) 531, 1900017 (2019). |
|
[42] | N. R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, and P. M. Ajayan, Emerging applications of elemental 2D materials, Adv. Mater. 32, 1904302 (2020). |
|
[43] | C. Grazianetti, C. Martella, and A. Molle, 8 - Two-dimensional Xenes and their device concepts for future micro- and nanoelectronics and energy applications, edited by L. Tao and D. Akinwande, Micro and Nano Technologies (Elsevier,2020), pp. 181-219. |
|
[44] | F. Bechstedt, P. Gori, and O. Pulci, Beyond graphene: clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene, Prog. Surf. Sci. 96, 100615 (2021). |
|
[45] | C.-C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and two- dimensional germanium, Phys. Rev. Lett. 107, 076802 (2011). |
|
[46] | M. Ezawa, Monolayer topological insulators: silicene, germanene, and stanene, J. Phys. Soc. Japan 84, 121003 (2015). |
|
[47] | L Matthes, S. Küfner, J. Furthmüller, and F. Bechstedt, Quantization and topological states in the spin Hall conductivity of low-dimensional systems: An ab initio study, Phys. Rev. B 93, 121106 (2016). |
|
[48] | F. Matusalem, D. S. Koda, F. Bechstedt, M. Marques, and L. K. Teles, Deposition of topological silicene, germanene and stanene on graphene-covered sic substrates, Sci. Rep. 7, 15700 (2017). |
|
[49] | X.-L. Yu, L. Huang, and J. Wu, From a normal insulator to a topological insulator in plumbene, Phys. Rev. B 95, 125113 (2017). |
|
[50] | M. N. Brunetti, O. L. Berman, and R. Ya. Kezerashvili, Can freestanding Xene monolayers behave as excitonic insulators?, Phys. Lett. A 383, 482 (2019). |
|
[51] | M. N. Brunetti, O. L. Berman, and R. Ya. Kezerashvili, Optical properties of excitons in buckled two-dimensional materials in an external electric field, Phys. Rev. B 98, 125406 (2018). |
|
[52] | O. Pulci, P. Gori, D. Grassano, M. D'Alessandro, and F. Bechstedt, Transitions in Xenes between excitonic, topological and trivial insulator phases: influence of screening, band dispersion and external electric field, SciPost Phys. 15, 025 (2023). |
|
[53] | N. S. Rytova, Screened potential of a point charge in a thin film, Proc. MSU Phys., Astron. 3, 30 (1967), https:// www.researchgate.net/publication/320224883_Screened_potential_of_a_point_charge_in_a_thin_film. |
|
[54] | L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, JETP Lett. 29, 658 (1979). |
|
[55] | C. J. Tabert and E. J. Nicol, Dynamical polarization function, plasmons, and screening in silicene and other buckled honeycomb lattices, Phys. Rev. B 89, 195410 (2014). |
|
[56] | T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides, Phys. Rev. B 88, 045318 (2013). |
|
[57] | M. Fogler, L. Butov, and K. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostruc- tures, Nat. Commun. 5, 4555 (2014). |
|
[58] | O. L. Berman and R. Ya. Kezerashvili, High- temperature superfluidity of the two component Bose gas in a transition metal dichalcogenide bilayer, Phys. Rev. B 93, 245410 (2016). |
|
[59] | G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Colloquium: excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 021001 (2018). |
|
[60] | O. L. Berman and R. Ya. Kezerashvili, Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer, Phys. Rev. B 96, 094502 (2017). |
|
[61] | P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphene, Phys. Rev. B 84, 085406 (2011). |
|
[62] | J. Avery, Hyperspherical Harmonics, Kluwer Academic, Dordrecht, 1989. |
|
[63] | R.I. Jibuti and K. V. Shitikova: Method of hyperspherical functions in atomic and nuclear physics, Energoatomizdat, Moscow, 270p. 1993. (in Russian). |
|
[64] | L.D. Faddeev and S.P. Merkuriev, Quantum scattering theory for several particle systems (Kluwer Academic, Dordrecht, 1993) pp. 398. |
|
[65] | I. Filikhin, R. Ya. Kezerashvili, and B. Vlahovic, The charge and mass symmetry breaking in the KKK system, J. Phys. G: Nucl. Part. Phys. 51, 035102 (2024). |
|