International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2024, 12(5), 225-231
DOI: 10.12691/ijp-12-5-5
Open AccessArticle

Electric-field-tuned Binding Energies of Trions in Silicene, Germanene, and Stanene Monolayers

Roman Ya. Kezerashvili1, 2, Shalva M. Tsiklauri3 and Anastasia Spiridonova1,

1New York City College of Technology, The City University of New York, USA

2The Graduate School and University Center, The City University of NewYork, USA

3Borough of Manhattan Community College, The City University of New York, USA

Pub. Date: September 17, 2024

Cite this paper:
Roman Ya. Kezerashvili, Shalva M. Tsiklauri and Anastasia Spiridonova. Electric-field-tuned Binding Energies of Trions in Silicene, Germanene, and Stanene Monolayers. International Journal of Physics. 2024; 12(5):225-231. doi: 10.12691/ijp-12-5-5

Abstract

We predict the formation of intravalley controllable trions in buckled two-dimensional (2D) materials such as silicene, germanene, and stanene monolayers in an external electric field. Performing a study within the framework of a nonrelativistic potential model using the method of hyperspherical harmonics (HH), the three-body Schrödinger equation is solved with the Rytova-Keldysh potential by expanding the wave functions of a trion in terms of the HH. Then, we numerically solve a resultant system of coupled differential equations. The ground state energies of intravalley trions controlled by the external electric field are presented. The dependencies of the binding energy (BE) of trions in silicene, germanene, and stanene as a function of the electric field are shown to be qualitatively similar. BEs of trions formed by A and B excitons have a non-negligible difference that increases slightly as the electric field increases. We demonstrate that trion BEs can be controlled by the external electric field.

Keywords:
trion binding energy Xene monolayer

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  M. A. Lampert, Mobile and immobile effective-mass particle complexes in nonmetallic solids, Phys. Rev. Lett. 1, 450 (1958).
 
[2]  A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Z6lyomi, N. D. Drummond, and V. Fal'ko, kp theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Mater. 2, 022001 (2015).
 
[3]  G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, B. Urbaszek, Excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 21001 (2018).
 
[4]  K. F. Mak, K. He, C. Lee, et al, Tightly bound trion in monolayer MoS2, Nat. Mater. 12, 207 (2013).
 
[5]  H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2, 57 (2015).
 
[6]  T. C. Berkelbach and D. R. Reichman, Optical and excitonic properties of atomically thin transition-metal dichalcogenides, Annu. Rev. Condens. Matter Phys. 2018. 9, 379-96 (2018).
 
[7]  M. V. Durnev and M. M. Glazov, Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides, Phys. Usp. 61, 825 (2018).
 
[8]  R. Ya. Kezerashvili, Few-body systems in condensed matter physics, Few- Body Syst. 60, 52 (2019).
 
[9]  M. A. Semina and R. A. Suris, Localized excitons and trions in semiconductor nanosystems, Phys. Usp. 65, 111 (2022).
 
[10]  R. Ya. Kezerashvili and Sh. M. Tsiklauri, Trion and biexciton in monolayer transition metal dichogenides, Few- Body Syst. 58, 18 (2017).
 
[11]  I. Filikhin, R. Ya. Kezerashvili, and B. Vlahovic, On binding energy of trions in bulk materials, Phys. Lett. A 382, 787 (2018).
 
[12]  K. Mohseni, M. R. Hadizadeh, T. Frederico, D. R. da Costa, and A. J. Chaves, Trion clustering structure and BE in two-dimensional semiconductor materials: Faddeev equations approach, Phys. Rev. B 107, 165427 (2023).
 
[13]  R. Ya. Kezerashvili, S. M. Tsiklauri, and A. Dublin, Trions in two-dimensional monolayers within the hyperspherical harmonics method: application to transition metal dichalcogenides, Phys Rev. B 109, 085406 (2024).
 
[14]  A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, and D. Akinwande, Buckled two -dimensional Xene sheets, Nat. Mater.16, 163 (2017).
 
[15]  J. Zheng, Y. Xiang, C. Li, R. Yuan, F. Chi, and Y. Guo, All-optically controlled topological transistor based on Xenes, Phys. Rev. Appl. 14, 034027 (2020).
 
[16]  L. Matthes, O. Pulci, and F. Bechstedt, Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene, J. Phys.: Condens. Matter 25, 395305 (2013).
 
[17]  A. Acun, B. Poelsema, H. J. W. Zandvliet, and R. van Gastel, The instability of silicene on Ag (111), Appl. Phys. Lett. 103, 263119 (2013).
 
[18]  L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, Silicene field- effect transistors operating at room temperature, Nat. Nanotechnol. 10, 227 (2015).
 
[19]  B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, and G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene, Appl. Phys. Lett. 96, 183102 (2010).
 
[20]  P. De Padova, C. Quaresima, C. Ottaviani, P. M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, and G. Le Lay, Evidence of graphene-like electronic signature in silicene nanoribbons, Appl. Phys. Lett. 96, 261905 (2010).
 
[21]  N. D. Drummond, V. Zólyomi, and V. I. Fal'ko, Electrically tunable band gap in silicene, Phys. Rev. B 85,075423 (2012).
 
[22]  M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett. 109, 055502 (2012).
 
[23]  M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. L. Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys 16, 095002 (2014).
 
[24]  A. J. Mannix, B. Kiraly, M. C. Hersam, and N. P. Guisinger, Synthesis and chemistry of elemental 2D materials, Nat. Rev. Chem. 1, 0014 (2017).
 
[25]  C. Grazianetti, C. Martella, and A. Molle, The Xenes generations: a taxonomy of epitaxial single-element 2D materials, Phys. Status Solidi RRL 14, 1900439 (2020).
 
[26]  D. Di Sante, X. Wu, M. Fink, W. Hanke, and R. Thomale, Triplet superconductivity in the Dirac semimetal germanene on a substrate, Phys. Rev. B 99, 201106 (2019).
 
[27]  L. Li, X. Wang, X. Zhao, and M. Zhao, Moiré superstructures of silicene on hexagonal boron nitride: A first- principles study, Phys. Lett. A 377, 2628 (2013).
 
[28]  A. I. Khan, T. Chakraborty, N. Acharjee, and S. Subrina, Stanene-hexagonal boron nitride heterobilayer: structure and characterization of electronic property, Sci. Rep. 7, 16347 (2017).
 
[29]  S. Saxena, R. P. Chaudhary, and S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin, Sci. Rep. 6, 31073 (2016).
 
[30]  M. Ezawa, Quantum Hall effects in silicene, J. Phys. Soc. Jpn. 81, 064705 (2012).
 
[31]  R. Ya. Kezerashvili and A. Spiridonova, Effects of parallel electric and magnetic fields on Rydberg excitons in buckled two- dimensional materials, Phys. Rev. B 103, 165410 (2021).
 
[32]  F. Bechstedt, L. Matthes, P. Gori, and O. Pulci, Infrared absorbance of silicene and germanene, Appl. Phys. Lett. 100, 261906 (2012).
 
[33]  L. Stille, C. J. Tabert, and E. J. Nicol, Optical signatures of the tunable band gap and valley-spin coupling in silicene, Phys. Rev. B 86, 195405 (2012).
 
[34]  M. Fadaie, N. Shahtahmassebi, and M. R. Roknabad, Effect of external electric field on the electronic structure and optical properties of stanene, Opt. Quantum Electron. 48, 440 (2016).
 
[35]  D. Muoi, N. N. Hieu, C. V. Nguyen, B. D. Hoi, H. V. Nguyen, N. D. Hien, N. A. Poklonski, S. S. Kubakaddi, and H. V. Phuc, Magneto-optical absorption in silicene and germanene induced by electric and Zeeman fields, Phys. Rev. B 101, 205408 (2020).
 
[36]  S. Chowdhury and D. Jana, A theoretical review on electronic, magnetic and optical properties of silicene, Rep. Prog. Phys. 79, 126501 (2016).
 
[37]  X. Zhai, Y.-T. Wang, R. Wen, S.-X. Wang, Y. Tian, X. Zhou, W. Chen, and Z. Yang, Valley-locked thermospin effect in silicene and germanene with asymmetric magnetic field induced by ferromagnetic proximity effect, Phys. Rev. B 97, 085410 (2018).
 
[38]  A. Zhao and B. Wang, Two-dimensional graphene-like Xenes as potential topological materials, APL Mater. 8, 030701 (2020).
 
[39]  V. Y. Tsaran and S. G. Sharapov, Landau levels and magnetic oscillations in gapped Dirac materials with intrinsic Rashba interaction, Phys. Rev. B 90, 205417 (2014).
 
[40]  C.-H. Chen, W.-W. Li, Y.-M. Chang, C.-Y. Lin, S.-H. Yang, Y. Xu, and Y.-F. Lin, Negative-differential-resistance devices achieved by band-structure engineering in silicene under periodic potentials, Phys. Rev. Appl. 10, 044047 (2018).
 
[41]  J.-K. Lyu, S.-F. Zhang, C.-W. Zhang, and P.-J.Wang, Stanene: a promising material for new electronic and spintronic applications, Ann. Phys. (Berlin, Ger.) 531, 1900017 (2019).
 
[42]  N. R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, and P. M. Ajayan, Emerging applications of elemental 2D materials, Adv. Mater. 32, 1904302 (2020).
 
[43]  C. Grazianetti, C. Martella, and A. Molle, 8 - Two-dimensional Xenes and their device concepts for future micro- and nanoelectronics and energy applications, edited by L. Tao and D. Akinwande, Micro and Nano Technologies (Elsevier,2020), pp. 181-219.
 
[44]  F. Bechstedt, P. Gori, and O. Pulci, Beyond graphene: clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene, Prog. Surf. Sci. 96, 100615 (2021).
 
[45]  C.-C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and two- dimensional germanium, Phys. Rev. Lett. 107, 076802 (2011).
 
[46]  M. Ezawa, Monolayer topological insulators: silicene, germanene, and stanene, J. Phys. Soc. Japan 84, 121003 (2015).
 
[47]  L Matthes, S. Küfner, J. Furthmüller, and F. Bechstedt, Quantization and topological states in the spin Hall conductivity of low-dimensional systems: An ab initio study, Phys. Rev. B 93, 121106 (2016).
 
[48]  F. Matusalem, D. S. Koda, F. Bechstedt, M. Marques, and L. K. Teles, Deposition of topological silicene, germanene and stanene on graphene-covered sic substrates, Sci. Rep. 7, 15700 (2017).
 
[49]  X.-L. Yu, L. Huang, and J. Wu, From a normal insulator to a topological insulator in plumbene, Phys. Rev. B 95, 125113 (2017).
 
[50]  M. N. Brunetti, O. L. Berman, and R. Ya. Kezerashvili, Can freestanding Xene monolayers behave as excitonic insulators?, Phys. Lett. A 383, 482 (2019).
 
[51]  M. N. Brunetti, O. L. Berman, and R. Ya. Kezerashvili, Optical properties of excitons in buckled two-dimensional materials in an external electric field, Phys. Rev. B 98, 125406 (2018).
 
[52]  O. Pulci, P. Gori, D. Grassano, M. D'Alessandro, and F. Bechstedt, Transitions in Xenes between excitonic, topological and trivial insulator phases: influence of screening, band dispersion and external electric field, SciPost Phys. 15, 025 (2023).
 
[53]  N. S. Rytova, Screened potential of a point charge in a thin film, Proc. MSU Phys., Astron. 3, 30 (1967), https:// www.researchgate.net/publication/320224883_Screened_potential_of_a_point_charge_in_a_thin_film.
 
[54]  L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, JETP Lett. 29, 658 (1979).
 
[55]  C. J. Tabert and E. J. Nicol, Dynamical polarization function, plasmons, and screening in silicene and other buckled honeycomb lattices, Phys. Rev. B 89, 195410 (2014).
 
[56]  T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Theory of neutral and charged excitons in monolayer transition metal dichalcogenides, Phys. Rev. B 88, 045318 (2013).
 
[57]  M. Fogler, L. Butov, and K. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostruc- tures, Nat. Commun. 5, 4555 (2014).
 
[58]  O. L. Berman and R. Ya. Kezerashvili, High- temperature superfluidity of the two component Bose gas in a transition metal dichalcogenide bilayer, Phys. Rev. B 93, 245410 (2016).
 
[59]  G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Colloquium: excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys. 90, 021001 (2018).
 
[60]  O. L. Berman and R. Ya. Kezerashvili, Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer, Phys. Rev. B 96, 094502 (2017).
 
[61]  P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphene, Phys. Rev. B 84, 085406 (2011).
 
[62]  J. Avery, Hyperspherical Harmonics, Kluwer Academic, Dordrecht, 1989.
 
[63]  R.I. Jibuti and K. V. Shitikova: Method of hyperspherical functions in atomic and nuclear physics, Energoatomizdat, Moscow, 270p. 1993. (in Russian).
 
[64]  L.D. Faddeev and S.P. Merkuriev, Quantum scattering theory for several particle systems (Kluwer Academic, Dordrecht, 1993) pp. 398.
 
[65]  I. Filikhin, R. Ya. Kezerashvili, and B. Vlahovic, The charge and mass symmetry breaking in the KKK system, J. Phys. G: Nucl. Part. Phys. 51, 035102 (2024).