International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2024, 12(4), 126-146
DOI: 10.12691/ijp-12-4-2
Open AccessArticle

Self-Variation Theory-Part II

Emmanuil Manousos1,

1APM Institute for the Advancement of Physics and Mathematics, Athens, Greece

Pub. Date: June 20, 2024

Cite this paper:
Emmanuil Manousos. Self-Variation Theory-Part II. International Journal of Physics. 2024; 12(4):126-146. doi: 10.12691/ijp-12-4-2

Abstract

In this article we present the second part of the Self-Variation Theory. The article includes three sections; the gravitational interaction, the justification of the cosmological data, and the system of equations for the structure of matter and quantum phenomena.

Keywords:
electromagnetism gravity particle interactions origin of universe evolution of universe structure of matter quantum phenomena

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Corbelli, Edvige, and Paolo Salucci. "The extended rotation curve and the dark matter halo of M33." Monthly Notices of the Royal Astronomical Society 311.2 (2000): 441-447.
 
[2]  Green Anne M., and Bradley J. Kavanagh. "Primordial Black Holes as a dark matter candidate." Journal of Physics G: Nuclear and Particle Physics 48.4 (2021): 043001.
 
[3]  Hong, S. E., Jeong, D., Hwang, H. S., & Kim, J. "Revealing the local cosmic web from galaxies by deep learning." The Astrophysical Journal 913.1 (2021): 76.
 
[4]  Manousos, Emmanuil. "Awaiting the Measurements by the James Webb Space Telescope:‘A Hitherto Unrecognized Principle of Nature’Justifies the Cosmological Data." European Journal of Applied Physics 5.3 (2023): 31-35.
 
[5]  Najita, Joan R., Glenn P. Tiede, and John S. Carr. "From stars to superplanets: The low-mass initial mass function in the young cluster IC 348." The Astrophysical Journal 541.2 (2000): 977.
 
[6]  Natarajan, P., Chadayammuri, U., Jauzac, M., et al. "Mapping substructure in the HST Frontier Fields cluster lenses and in cosmological simulations." Monthly Notices of the Royal Astronomical Society 468.2 (2017): 1962-1980.
 
[7]  Orkney, M. D., Taylor, E., Read, J. I., et al. "EDGE: the shape of dark matter haloes in the faintest galaxies." Monthly Notices of the Royal Astronomical Society 525.3 (2023): 3516-3532.
 
[8]  Peacock, J. A., Cole, S., Norberg, P., et al. "A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey." Nature 410.6825 (2001): 169-173.
 
[9]  Roberts, Morton S., and Robert N. Whitehurst. "The rotation curve and geometry of M31 at large galactocentric distances." Astrophysical Journal, Vol. 201, p. 327-346 201 (1975): 327-346.
 
[10]  Rubin, Vera C., and W. Kent Ford Jr. "Rotation of the Andromeda nebula from a spectroscopic survey of emission regions." Astrophysical Journal, vol. 159, p. 379 159 (1970): 379.
 
[11]  Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., et al. "Observational evidence from supernovae for an accelerating universe and a cosmological constant." The astronomical journal 116.3 (1998): 1009.
 
[12]  Weijmans, A. M., Cappellari, M., Bacon, R., De Zeeuw, et al. "Stellar velocity profiles and line strengths out to four effective radii in the early-type galaxies NGC 3379 and 821." Monthly Notices of the Royal Astronomical Society 398.2 (2009): 561-574.
 
[13]  Yu, X., Shi, Y., Chen, Y., et al. "What drives the velocity dispersion of ionized gas in star-forming galaxies?." Monthly Notices of the Royal Astronomical Society 486.4 (2019): 4463-4472.
 
[14]  Zwicky, Fritz. "On the Masses of Nebulae and of Clusters of Nebulae." The Astrophysical Journal 86 (1937): 217.
 
[15]  Guth, Alan H. "Inflationary universe: A possible solution to the horizon and flatness problems." Physical Review D 23.2 (1981): 347.
 
[16]  Perlmutter S., Turner M.S., White M. Constraining Dark Energy withType Ia Supernovae and Large-Scale Structure. Physical Review Letters 83, 670–673 (1999).
 
[17]  Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., et al. "Observational evidence from supernovae for an accelerating universe and a cosmological constant." The astronomical journal 116.3 (1998): 1009.
 
[18]  Bañados, Eduardo, Venemans, B. P., Mazzucchelli, C., Farina, E. P., Walter, F., Wang, F, et al. "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5." Nature 553.7689 (2018): 473.
 
[19]  Bowman, Judd D., Rogers, A. E., Monsalve, R. A., Mozdzen, T. J., & Mahesh, N. "An absorption profile centred at 78 megahertz in the sky-averaged spectrum." Nature 555.7694 (2018): 67-70.
 
[20]  Gott III, J.R., Jurić, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., et al. A Map of the Universe. ApJ 624, 463 (2005).
 
[21]  Quinn, T., Parks, H., Speake, C., & Davis, R. "Improved determination of G using two methods." Physical review letters 111.10 (2013): 101102.
 
[22]  Riess, Adam G., Anand, G. S., Yuan, W., Casertano, S., Dolphin, A., Macri, L. M., et al. "JWST Observations Reject Unrecognized Crowding of Cepheid Photometry as an Explanation for the Hubble Tension at 8σ Confidence." The Astrophysical Journal Letters 962.1 (2024): L17.
 
[23]  Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. & Scolnic, D. Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. The Astrophysical Journal, (2019); 876(1): 85.
 
[24]  Manousos, E. The theory of self-variations. A continuous slight increase of the charges and the rest masses of the particles can explain the cosmological data. Nuovo Cimento B Serie, 122, 359-388 (2007).
 
[25]  Schrödinger, Erwin. "Die Erfüllbarkeit der Relativitätsforderung in der klassischen Mechanik." Annalen der Physik 382.11 (1925): 325-336.
 
[26]  Planck, M. On the law of distribution of energy in the normal spectrum. Annalen der Physik 4 (553), 1 (1901).
 
[27]  Webb, J. K., King, J. A., Murphy, M. T., Flambaum, V. V., Carswell, R. F., & Bainbridge, M. B. "Indications of a spatial variation of the fine structure constant." Physical Review Letters 107.19 (2011): 191101.
 
[28]  King, J. A., Webb, J. K., Murphy, M. T., Flambaum, V. V., Carswell, R. F., Bainbridge, et al. Spatial variation in the fine-structure constant–new results from VLT/UVES. Monthly Notices of the Royal Astronomical Society 422(4), 3370-3414 (2012).
 
[29]  Hubble, Edwin, and Milton L. Humason. "The velocity-distance relation among extra-galactic nebulae." The Astrophysical Journal 74 (1931): 43.
 
[30]  Penzias, Arno A., and Robert Woodrow Wilson. "A Measurement of Excess Antenna Temperature at 4080 Mc/s." The Astrophysical Journal 142 (1965): 419-421.
 
[31]  Kurt, Vladimir Gdalevich, and Nadezhda Nikolaevna Shakhvorostova. "CMB spectral distortions during the recombination of the primeval plasma in the early Universe." Physics-Uspekhi 57.4 (2014): 389.
 
[32]  Heisenberg, Werner. "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik." Zeitschrift für Physik 43.3 (1927): 172-198.
 
[33]  Perlmutter S., Turner M.S., White M. Constraining Dark Energy withType Ia Supernovae and Large-Scale Structure. Physical Review Letters 83, 670–673 (1999).
 
[34]  Planck, M. On the law of distribution of energy in the normal spectrum. Annalen der Physik 4 (553), 1 (1901).
 
[35]  Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., et al. "Observational evidence from supernovae for an accelerating universe and a cosmological constant." The astronomical journal 116.3 (1998): 1009.
 
[36]  Bohr, Niels. "XXXVII. On the constitution of atoms and molecules." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 26.153 (1913): 476-502.
 
[37]  Dirac, Paul Adrien Maurice. "The quantum theory of the electron." Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 118.779 (1928): 351-361.