International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2023, 11(2), 88-96
DOI: 10.12691/ijp-11-2-5
Open AccessArticle

Estimation of Cation Distribution in Zn0.5Mg0.5PrxFe2-xO4 Ferrites Using 57Fe Mössbauer Spectroscopy

Sahi Ram1, and Shailndra Singh1

1Mössbauer Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur, Rajasthan, India-342001

Pub. Date: May 19, 2023

Cite this paper:
Sahi Ram and Shailndra Singh. Estimation of Cation Distribution in Zn0.5Mg0.5PrxFe2-xO4 Ferrites Using 57Fe Mössbauer Spectroscopy. International Journal of Physics. 2023; 11(2):88-96. doi: 10.12691/ijp-11-2-5

Abstract

A series of praseodymium-doped Zn0.5Mg0.5PrxFe2-xO4 (x= 0.0, 0.02, 0.06 and 0.10) ferrites were synthesized by solid-state reaction method to study the impact of doping Pr3+ ions on the structural and magnetic properties of Zn0.5Mg0.5PrxFe2-xO4 ferrite compositions. The powdered x-ray diffraction studies revealed the presence of peaks corresponding to tetrahedral and octahedral positions, confirming cubic spinel structure in all samples. Vibratory sample magnetometer study revealed changes in microscopic magnetic properties. The net magnetization increased while the coercivity decreased with increase in concentration of Pr3+ substitution. 57Fe Mössbauer studies were used to obtain the chemical state of iron and its occupancy to tetrahedral/octahedral site and to estimate the cation distribution of tetrahedral site and octahedral site in all synthesized ferrite compositions. Using the cation distribution of tetrahedral site and octahedral site, an attempt is made to understand the magnetic properties of Pr doped Zn-Mg ferrites.

Keywords:
Spinel Ferrite Chemical state of iron Cation Distribution magnetic properties 57Fe Mössbauer Spectroscopy

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Henderson, C. M. B., Charnock, J. M. and Plant, D. A., (2007), Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: A multi-element EXAFS study, J. Phys. : Condens. matter, Vol. 19 (7), 076214.
 
[2]  Ahamed, T., Rahman, I. Z. and Rahman, A., (2005), Study on the properties of the copper substituted NiZn ferrites, J. Mater. Process. Tech., Vol. 153, pp. 797-803.
 
[3]  Mahmoud, M. H. and Sattar, A. A., (2004), Mössbauer study of Cu-Zn ferrite substituted with rare earth ions, J. Magn. Magn. Mater., Vol. 277 (1-2), 101-105.
 
[4]  Meng, X., Li H., Chen, J, Mei, L., Wang, K. and Li, X., (2009), Mössbauer study of cobalt ferrite nanocrystals substituted with rare earth Y3+ ion, J. Magn. Magn. Mater., Vol. 311(9), pp. 1155-1158.
 
[5]  Routray, K., Saha, S. and Behera, D., (2019), Rare-earth (La3+) substitution induced changes in the structural, dielectric and magnetic properties of nano-CoFe2O4 for high-frequency and magneto-recording devices, Appl. Phys. A., Vol. 125(5).
 
[6]  Routray, K., Saha, S., Sanyal, D. and Behera, D., (2018), Role of rare-earth (Nd3+) ions on structural, dielectric, magnetic and Mössbauer properties of nano-CoFe2O4: useful for high frequency application, Mat. Res. Exp., Vol. 6(2).
 
[7]  Ram, S. and Singh, S., (2022), Study of magnetic interactions in Dy3+ substituted Zn0.5Mg0.5DyxFe2-xO4 Ferrites, World J. Chem. Edu., Vol. 10(2), pp. 76-83.
 
[8]  Mørup, S. and Hansen, B. R., (2005), Uniform magnetic excitation in nanoparticles, Phys. Rev. B (Cond. Matter & Materials Phys.), Vol. 72(2), 024418.
 
[9]  Brown Jr., W. F. (1963), Thermal fluctuations of a single-domain particle, Phys. Rev., Vol. 130, 1677-1686.
 
[10]  Singh, S, Barbar, S. K. and Ram, S., (2018), Synthesis and Characterization of Zn-Mg Ferrite, AIP Conf. Proc., 1953, 090023.
 
[11]  Rodriguez-Carvajal, B., (2001), Recent developments of the program FULLPROF, commission on powder diffraction, IUCr. Newsl., Vol. 26.
 
[12]  Ram, S., Patel, K. R., Sharma, S. K. and Tripathi, R. P. (1998) Distribution of iron in siderite in sub-surface sediments of Jaisalmer Basin (India) using Mössbauer spectroscopy, Fuel, v. 77, No 13, pp. 1507-1512.
 
[13]  Meerwall, E.von., (1975), A least-squares curve fitting routine for strongly overlapping Lorentzians or Gaussians, Comp. phys. Comm., Vol. 9(2), pp.117-128.
 
[14]  Singh S., (2022), Study of structural, magnetic and electric properties of ferrite nanoparticles doped with rare earth elements, http://hdl.handle.net/10603/454821.
 
[15]  Cullity, B. D. and Stock, S. R., (2001), Elements of X-ray diffraction, Third Ed. Prentice-Hall, New York.
 
[16]  Smallman, R.E., (1985), Modern physical metallurgy, fourth Ed., Butterworths-Heinemann, London.
 
[17]  Pachpinde, A. M., Langade, M. M., Lohar, K. S., Patange, S. M. and Sagar, E. S, (2014), Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2-xO4 nanoparticles, Chem. Phys., Vol. 429, pp. 20-26.
 
[18]  Mohseni, H., Shokrollahi, H., Sharifi, I. and Gheisari, K., (2012), Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process, J. Magn. Magn. Mater., Vol. 324, no. 22, pp. 3741-3747.
 
[19]  Kumar, S., Farea, A. M. M., Batoo, K. M., Lee, C. G., Koo, B. H. and Yonsef, A., (2008), Mössbauer studies of Co0.5CdxFe2.5-xO4 (0.0 ≤ x ≤ 0.5) ferrite”, Physica B: Condensed matter, Vol. 403 (19-20), pp. 3604-3607.
 
[20]  Eltabey, M. M., Massoud, A. M. and Radu, C., (2014), Microstructure and Superparamagnetic Properties of Mg-Ni-Cd Ferrites Nanoparticles, Journal of nanomaterials, Vol. 204, pp. 492832.
 
[21]  Wang, J., Zeng, C., Peng, Z. and Chen, Q., (2004), Synthesis and magnetic properties of Zn1−xMnxFe2O4 nanoparticles, Physica B, Vol. 349 (1-4), pp. 124-128.
 
[22]  Sreeja, V., Vijyanand, S., Deka, S. and Joy, P., (2008), Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method, Hyperfine interaction, Vol. 183(1-3), pp. 99-107.
 
[23]  Gupta, M. and Randhawa, B. S., (2011), Mössbauer, magnetic and electric studies on mixed Rb–Zn ferrites prepared by solution combustion method, Mat. chem. and phys., Vol. 130, pp. 513-518.
 
[24]  Suwalka, O., Sharma, R. K., Sebastian, V., Laxmi, N. and Venogopalan, K., (2007), A study of nanosized Ni substituted C0-Zn ferrite prepared by coprecipitation, J. Magn. Magn. Mater., Vol. 313, pp. 198-203.
 
[25]  Thummer, K. P., Chhantbar, M. C., Modi, K. B., Baldha, G. J. and Joshi, H. H., (2004), Localized canted spin behavior in ZnxMg1.5-xMn0.5FeO4 spinel ferrite system, J. Magn. Magn. Mater., Vol. 280(1), pp. 23-30.
 
[26]  Phor, L., Chahal, S. and Kumar, V., (2020), Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: Investigation on structural and spin-interactions, J. Adv. Ceram., Vol. 9(5), pp. 576-587.
 
[27]  Mohammed, K. A., Al-Rawas, A. D., Gismelseed, A. M., Setlai, A., Widatallah, H. M., Yousif, A., Elzain, M. E. and Shongwe, M., (2012), Infrared and structural studies of Mg1-xZnxFe2O4 ferrites, Physics B, Vol. 407, pp. 795-804.
 
[28]  Globus, A., Pascard, H. and Cagan, V., (1977), Distance between magnetic ions and fundamental properties in ferrite, J. Phys. Colloques, Vol. 38, pp. 163-168.
 
[29]  Mazen, S. A., Abdallah, M. H., Sabrah, B. A., and Hashem, H. A. M., (1992), The Effect of Titanium on Some Physical Properties of CuFe2O4, Physica Status solidi (a), Vol. 134(1), pp. 263-271.
 
[30]  Chouhan, B. S., Kumar, R., Jadhav, K. M. and Singh, M., (2004), Magnetic study of substituted Mg-Mn ferrites synthesized by citrate precursor method, J. Magn.Magn. Mater., Vol. 283, pp. 71-81.
 
[31]  Kumar, G., Kanthwal, M., Chauhan, B. S. and Singh, M., (2006), Cation distribution in mixed Mg-Mn ferrites from X-Ray diffraction technique and saturation magnetization, Ind. J. Pure & Appl. Phys., Vol. 44, pp. 930-934.
 
[32]  Zaki, H. M., Al-Heniti, S. H. and Elmosalami T. A., (2015), Structural. magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite, J. Alloys and compounds, Vol. 633, pp.104-114.
 
[33]  Lakhani, V. K., Pathak, T. K., Vasoya, N. H. and Modi, K. B., (2011), Structural parameters and x-ray Debye temperature determination study on copper-ferrite-aluminates, Solid State Sciences, Vol. 13, pp. 539-547.
 
[34]  Babic-Stojic, B., Jokanovic, V., Milivojevic, D., Jaglicic, Z., Makovec, D., Jovic, N. and Marinovic-Cincovic, M., (2013), Magnetic and Structural Studies of CoFe2O4 Nanoparticles Suspended in an Organic Liquid, Jour. Nanomater., Vol. 2013, pp. 741036.
 
[35]  Pankhurst, Q. A. and Pollard, R. J., (1991), Origin of the spin-canting anomaly in small ferrimagnetic particles, Physics Review Letters” Vol. 67(2), pp. 248-250.
 
[36]  Venkataraju, C., Sathishkumar, G. and Shivakumar, K. (2010), Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method, J. Magn. Magn. Mater., Vol. 322(2), pp. 230-23.
 
[37]  Singh, C., Narang, S. B., Hudiara, I. S., Bai, Y. and Tabatabaei, F., (2008), Static magnetic properties of Co and Ru substituted Ba–Sr ferrite, Mater. Res. Bull., Vol. 43(1), pp. 176-184.
 
[38]  Yuping, W., Lianchao, Li., Hui, L., Haizhen, Q. and Feng, X., (2008), Magnetic properties and microstructure of La-substituted BaCr-ferrite powders, Materials Lett., Vol. 62, pp. 2060-2062.
 
[39]  Shirsath, S. E., Jadhav, S. S., Toksha, B. G., Patange, S. M. and Jadhav, K. M., (2011), Influence of Ce+4 ions on the structural and magnetic properties of NiFe2O4, J. Appl. Phys., Vol. 110, 013914.