[1] | Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho andˇ H. Morko, A comprehensive review of ZnO materials and devices, (2005). |
|
[2] | S. Limpijumnong and S. Jungthawan, First-principles study of the wurtzite-torocksalt homogeneous transformation in ZnO: A case of a low-transformation barrier, Physical Review B - Condensed Matter and Materials Physics 70(5) (2004). |
|
[3] | S. Goktas and A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review, (2021). |
|
[4] | G. B. Cordero, J. F. Murillo G., C. Ortega López, J. A. Rodríguez M. and M. J. Espitia R., Adsorption effect of a chromium atom on the structure and electronic properties of a single ZnO monolayer, Physica B: Condensed Matter 565(August 2018), 44 (2019). |
|
[5] | K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano Letters 7(6) (2007). |
|
[6] | T. G. Smijs and S. Pavel, Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness, Nanotechnology, Science and Applications 4(1), 95 (2011). |
|
[7] | S. Höfle, A. Schienle, M. Bruns, U. Lemmand A. Colsmann, Enhanced electron injection into inverted polymer light-emitting diodes by combined solutionprocessed zinc oxide/polyethylenimine interlayers, Advanced Materials 26(17) (2014). |
|
[8] | S. Hong, T. Joo, W. Park, Y. H. Jun and G. C. Yi, Time-resolved photoluminescence of the size-controlled ZnO nanorods, Applied Physics Letters 83(20), 4157 (2003). |
|
[9] | D. Liu and T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics 8(2) (2014). |
|
[10] | K. M. Lee, C. W. Lai, K. S. Ngai and J. C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, (2016). |
|
[11] | O. Akhavan, M. Mehrabian, K. Mirabbaszadeh and R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria, Journal of Physics D: Applied Physics 42(22) (2009). |
|
[12] | J. Huang, J. Zhou, Z. Liu, X. Li, Y. Geng, X. Tian, Y. Du and Z. Qian, Enhanced acetonesensing properties to ppb detection level using Au/Pd-doped ZnO nanorod, Sensors and Actuators, B: Chemical 310 (2020). |
|
[13] | D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta and G. P. Das, Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory, Physical Review B - Condensed Matter and Materials Physics 75(14) (2007). |
|
[14] | M. H. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A. R. Raju, C. Rout and U. V. Waghmare, First principles based design and experimental evidence for a ZnObased ferromagnet at room temperature, Physical Review Letters 94(18) (2005). |
|
[15] | J. Mera, C. Córdoba, J. Doria, A. Gómez, C. Paucar, D. Fuchs and O. Morán, Structural and magnetic properties of Zn1 - XMnxO nanocrystalline powders and thin films, Thin Solid Films 525, 13 (2012). |
|
[16] | J. Wu, X. Tang, F. Long and B. Tang, Effect of O-O bonds on p-type conductivity in Agdoped ZnO twin grain boundaries, Chinese Physics B 27(5) (2018). |
|
[17] | Q. Wan, Z. Xiong, D. Li, G. Liu and J. Peng, First-principles study on distribution of Ag in ZnO, Photonics and Optoelectronics Meetings (POEM) 2009: Solar Cells, Solid State Lighting, and Information Display Technologies 7518(August), 75180E (2009). |
|
[18] | S. Masoumi, E. Nadimi and F. Hossein-Babaei, Electronic properties of Ag-doped ZnO: DFT hybrid functional study, Physical Chemistry Chemical Physics 20(21) (2018). |
|
[19] | P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical Review 136(3B) (1964), doi:10.1103/PhysRev.136.B864. |
|
[20] | W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140(4A) (1965). |
|
[21] | K. F. Garrity, J. W. Bennett, K. M. Rabe and D. Vanderbilt, Pseudopotentials for high-throughput DFT calculations, Computational Materials Science 81, 446 (2014). |
|
[22] | P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni and Others, Advanced capabilities for materials modelling with Quantum ESPRESSO. (arXiv:1709.10010v1 [cond-mat.mtrl-sci]), Journal of Physics: Condensed Matter 29(46), 465901 (2017). |
|
[23] | P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli et al., QUAN-TUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter 21(39) (2009). |
|
[24] | J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77(18) (1996). |
|
[25] | H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13(12) (1976). |
|
[26] | C. Vargas-Hernández, M. J. Espitia R and R. E. Báez Cruz, Half-metallic ferromagnetism of ZnxMn1xO compounds: A first-principles study, Computational Condensed Matter 4, 1 (2015). |
|
[27] | C. Matter, A first-principles study of the magnetic properties in boron-doped ZnO A firstprinciples study of the magnetic properties in boron-doped ZnO (2012). |
|
[28] | S. Saib and N. Bouarissa, Structural parameters and transition pressures of ZnO: ab-initio calculations 1069(3), 1063 (2007). |
|
[29] | S. K. Neogi, R. Karmakar, A. K. Misra, A. Banerjee, D. Das and S. Bandyopadhyay, Journal of Magnetism and Magnetic Materials Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase, Journal of Magnetism and Magnetic Materials 346, 130 (2013). |
|
[30] | S. Desgreniers, High-density phases of ZnO: Structural and compressive parameters, Physical Review B - Condensed Matter and Materials Physics 58(21) (1998). |
|
[31] | H. Shi, R. Asahi and C. Stampfl, Properties of the gold oxides Au2 O3 and Au2 O: Firstprinciples investigation, Physical Review B - Condensed Matter and Materials Physics 75(20), 1 (2007). |
|
[32] | M. K. Yaakob, N. H. Hussin, M. F. Taib, T. I. Kudin, O. H. Hassan, A. M. Ali and M. Z. Yahya, First principles LDA+U calculations for ZnO materials, Integrated Ferroelectrics 155(1), 15 (2014). |
|
[33] | G. Li, H. Ahmoum, S. Liu, S. Liu, M. S. Su’ait, M. Boughrara, M. Kerouad and Q. Wang, Theoretical insight into magnetic and thermoelectric properties of Au doped ZnO compounds using density functional theory, Physica B: Condensed Matter 562(March), 67 (2019). |
|
[34] | Z. Charifi, H. Baaziz and A. H. Reshak, Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound, Physica Status Solidi (B) Basic Research 244(9), 3154 (2007). |
|
[35] | X. Si, Y. Liu, X. Wu, W. Lei, J. Xu, W. Du, T. Zhou and J. Lin, The interaction between oxygen vacancies and doping atoms in ZnO, Materials and Design 87, 969 (2015). |
|
[36] | J. Wróbel, K. J. Kurzydłowski, K. Hummer, G. Kresse and J. Piechota, Calculations of zno properties using the heyd-scuseria-ernzerhof screened hybrid density functional, Phys. Rev. B 80, 155124 (2009). |
|
[37] | Q. Xiang, S. Zhao, Y. Wu and G. Liu, Effect of Ag Doping on the Electronic Structure and Optical Properties of ZnO (0001) Surface 01008, 1 (2018). |
|