International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: Editor-in-chief: B.D. Indu
Open Access
Journal Browser
International Journal of Physics. 2022, 10(5), 262-266
DOI: 10.12691/ijp-10-5-3
Open AccessArticle

Structural, Electronic, and Magnetic Properties of Zn1-xAuxO Compounds: A First-principles Study

Ricardo Baez-Cruz1, , Paulraj Manidurai1 and Miguel J. Espitia-Rico2,

1Department of Physics, Faculty of Physical and Mathematical Science, University of Concepcion, PO Box 160-C, Concepcion, Chile

2Grupo GEFEM, Facultad de Ciencias Matemáticas y Naturales, Universidad Distrital Francisco José de Caldas, Bogotá Colombia

Pub. Date: December 16, 2022

Cite this paper:
Ricardo Baez-Cruz, Paulraj Manidurai and Miguel J. Espitia-Rico. Structural, Electronic, and Magnetic Properties of Zn1-xAuxO Compounds: A First-principles Study. International Journal of Physics. 2022; 10(5):262-266. doi: 10.12691/ijp-10-5-3


First-principles calculations were performed in the framework of Density Functional Theory to investigate the structural, electronic, and magnetic properties of the ZnO, Zn0.75Au0.25O, Zn0.50Au0.50O, and Zn0.25Au0.75O compounds, in a wurtzite-type structure. The Pseudopotential method was used as implemented in the Quantum Espresso code. The structural properties analysis shows that the compounds' lattice constant increases as increasing the Au concentration in the ZnO structure. The electronic density studies show that the Zn1-xAuxO compounds (x = 0.25, 0.50, and 0.75) have metallic and ferromagnetic behavior with a magnetic moment of 1.10 μβ/cell, 1.12 μβ/cell, and 1.20 μβ/cell, respectively. The metallic-ferromagnetic behavior is mainly due to hybridization between the Au-5d and O-2p states. These compounds are good candidates for optoelectronic applications.

DFT structural properties electronic properties ZnO

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 2


[1]  Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho andˇ H. Morko, A comprehensive review of ZnO materials and devices, (2005).
[2]  S. Limpijumnong and S. Jungthawan, First-principles study of the wurtzite-torocksalt homogeneous transformation in ZnO: A case of a low-transformation barrier, Physical Review B - Condensed Matter and Materials Physics 70(5) (2004).
[3]  S. Goktas and A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review, (2021).
[4]  G. B. Cordero, J. F. Murillo G., C. Ortega López, J. A. Rodríguez M. and M. J. Espitia R., Adsorption effect of a chromium atom on the structure and electronic properties of a single ZnO monolayer, Physica B: Condensed Matter 565(August 2018), 44 (2019).
[5]  K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices, Nano Letters 7(6) (2007).
[6]  T. G. Smijs and S. Pavel, Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness, Nanotechnology, Science and Applications 4(1), 95 (2011).
[7]  S. Höfle, A. Schienle, M. Bruns, U. Lemmand A. Colsmann, Enhanced electron injection into inverted polymer light-emitting diodes by combined solutionprocessed zinc oxide/polyethylenimine interlayers, Advanced Materials 26(17) (2014).
[8]  S. Hong, T. Joo, W. Park, Y. H. Jun and G. C. Yi, Time-resolved photoluminescence of the size-controlled ZnO nanorods, Applied Physics Letters 83(20), 4157 (2003).
[9]  D. Liu and T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nature Photonics 8(2) (2014).
[10]  K. M. Lee, C. W. Lai, K. S. Ngai and J. C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, (2016).
[11]  O. Akhavan, M. Mehrabian, K. Mirabbaszadeh and R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria, Journal of Physics D: Applied Physics 42(22) (2009).
[12]  J. Huang, J. Zhou, Z. Liu, X. Li, Y. Geng, X. Tian, Y. Du and Z. Qian, Enhanced acetonesensing properties to ppb detection level using Au/Pd-doped ZnO nanorod, Sensors and Actuators, B: Chemical 310 (2020).
[13]  D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta and G. P. Das, Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory, Physical Review B - Condensed Matter and Materials Physics 75(14) (2007).
[14]  M. H. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A. R. Raju, C. Rout and U. V. Waghmare, First principles based design and experimental evidence for a ZnObased ferromagnet at room temperature, Physical Review Letters 94(18) (2005).
[15]  J. Mera, C. Córdoba, J. Doria, A. Gómez, C. Paucar, D. Fuchs and O. Morán, Structural and magnetic properties of Zn1 - XMnxO nanocrystalline powders and thin films, Thin Solid Films 525, 13 (2012).
[16]  J. Wu, X. Tang, F. Long and B. Tang, Effect of O-O bonds on p-type conductivity in Agdoped ZnO twin grain boundaries, Chinese Physics B 27(5) (2018).
[17]  Q. Wan, Z. Xiong, D. Li, G. Liu and J. Peng, First-principles study on distribution of Ag in ZnO, Photonics and Optoelectronics Meetings (POEM) 2009: Solar Cells, Solid State Lighting, and Information Display Technologies 7518(August), 75180E (2009).
[18]  S. Masoumi, E. Nadimi and F. Hossein-Babaei, Electronic properties of Ag-doped ZnO: DFT hybrid functional study, Physical Chemistry Chemical Physics 20(21) (2018).
[19]  P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical Review 136(3B) (1964), doi:10.1103/PhysRev.136.B864.
[20]  W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140(4A) (1965).
[21]  K. F. Garrity, J. W. Bennett, K. M. Rabe and D. Vanderbilt, Pseudopotentials for high-throughput DFT calculations, Computational Materials Science 81, 446 (2014).
[22]  P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni and Others, Advanced capabilities for materials modelling with Quantum ESPRESSO. (arXiv:1709.10010v1 [cond-mat.mtrl-sci]), Journal of Physics: Condensed Matter 29(46), 465901 (2017).
[23]  P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli et al., QUAN-TUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter 21(39) (2009).
[24]  J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77(18) (1996).
[25]  H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13(12) (1976).
[26]  C. Vargas-Hernández, M. J. Espitia R and R. E. Báez Cruz, Half-metallic ferromagnetism of ZnxMn1xO compounds: A first-principles study, Computational Condensed Matter 4, 1 (2015).
[27]  C. Matter, A first-principles study of the magnetic properties in boron-doped ZnO A firstprinciples study of the magnetic properties in boron-doped ZnO (2012).
[28]  S. Saib and N. Bouarissa, Structural parameters and transition pressures of ZnO: ab-initio calculations 1069(3), 1063 (2007).
[29]  S. K. Neogi, R. Karmakar, A. K. Misra, A. Banerjee, D. Das and S. Bandyopadhyay, Journal of Magnetism and Magnetic Materials Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase, Journal of Magnetism and Magnetic Materials 346, 130 (2013).
[30]  S. Desgreniers, High-density phases of ZnO: Structural and compressive parameters, Physical Review B - Condensed Matter and Materials Physics 58(21) (1998).
[31]  H. Shi, R. Asahi and C. Stampfl, Properties of the gold oxides Au2 O3 and Au2 O: Firstprinciples investigation, Physical Review B - Condensed Matter and Materials Physics 75(20), 1 (2007).
[32]  M. K. Yaakob, N. H. Hussin, M. F. Taib, T. I. Kudin, O. H. Hassan, A. M. Ali and M. Z. Yahya, First principles LDA+U calculations for ZnO materials, Integrated Ferroelectrics 155(1), 15 (2014).
[33]  G. Li, H. Ahmoum, S. Liu, S. Liu, M. S. Su’ait, M. Boughrara, M. Kerouad and Q. Wang, Theoretical insight into magnetic and thermoelectric properties of Au doped ZnO compounds using density functional theory, Physica B: Condensed Matter 562(March), 67 (2019).
[34]  Z. Charifi, H. Baaziz and A. H. Reshak, Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound, Physica Status Solidi (B) Basic Research 244(9), 3154 (2007).
[35]  X. Si, Y. Liu, X. Wu, W. Lei, J. Xu, W. Du, T. Zhou and J. Lin, The interaction between oxygen vacancies and doping atoms in ZnO, Materials and Design 87, 969 (2015).
[36]  J. Wróbel, K. J. Kurzydłowski, K. Hummer, G. Kresse and J. Piechota, Calculations of zno properties using the heyd-scuseria-ernzerhof screened hybrid density functional, Phys. Rev. B 80, 155124 (2009).
[37]  Q. Xiang, S. Zhao, Y. Wu and G. Liu, Effect of Ag Doping on the Electronic Structure and Optical Properties of ZnO (0001) Surface 01008, 1 (2018).