International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2022, 10(3), 118-136
DOI: 10.12691/ijp-10-3-1
Open AccessArticle

Photon Theory of Gravity – An Advance from Einstein’s Relativity

Xianming Meng1,

1Research School of Physics, Australian National University, Canberra, ACT 2601

Pub. Date: June 26, 2022

Cite this paper:
Xianming Meng. Photon Theory of Gravity – An Advance from Einstein’s Relativity. International Journal of Physics. 2022; 10(3):118-136. doi: 10.12691/ijp-10-3-1

Abstract

Based on a postulate that photons of low frequencies (undetectable by current technology) are the gravity force carrier, the paper derives quantitative results that are the same as or very similar to those derived in the special and general relativity theories and explains experiments and observations better. These quantitative results include the mass-energy formula, the energy momentum equation, and those for relative mass, the transverse Doppler effect, gravitational red shift, planetary precession, the deflection angle of light in gravitational lensing, the orbits around a black hole, and the strength and direction of gravitational waves (orbit decay of pulsars). Moreover, the explanations are different from those in Einstein’s relativity theory, such as the explanation of the null Doppler effect of electromagnetic waves reflected from a transversely moving surface, the reason for gravitational red shift, and the size of the light sphere around a black hole. The paper claims that both the high-order Doppler effect and the gravitational red shift occur only at the point of photon emission. The paper also explains why the predicted pulsar orbit decay is close but differs from calculations based on observations.

Keywords:
photon density mass-energy equation general relativity theory black hole gravitational waves gravitational lensing

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 11

References:

[1]  Hay, H.J., Schiffer, J. P., Cranshaw, T. E. and Egelstaff, P. A. 1960, Measurement of the Red Shift in an Accelerated System Using the Mössbauer Effect in Fe57. Physical Review Letters, 4, 165.
 
[2]  Kündig, Walter. 1963, Measurement of the Transverse Doppler Effect in an Accelerated System. Phys. Rev. 129, 2371.
 
[3]  Kaivola, M., Poulsen, O., Riis, E., Lee, S., 1985. Measurement of the relativistic Doppler shift in neon. Physical Review Letters. Volume 54, Issue 4. P. 255-258. 1079-7114 (electronic). 0031-9007 (printed).
 
[4]  Klein F, Laroche T, Cardenas ME, Hofmann JF, Schweizer D, Gasser SM, 1992, Localization of RAP1 and topoisomerase II in nuclei and meiotic chromosomes of yeast. The Journal of Cell Biology, 117(5):935-48
 
[5]  Jennison, R.C. and Davies, P.A., 1974, Reflection from a transversely moving mirror, Nature, 248: 660-661.
 
[6]  Davies, P.A., and Jennison, R.C. 1975, Experiments involving mirror transponders in rotating frames, Journal of Physics A: Math, 8: 1390.
 
[7]  Thim, H. W. 2003, Absence of the relativistic Doppler shift at microwave frequencies, IEEE Instrumentation and Measurement, 52(5): 1660-1664.
 
[8]  Ives, H. E.; Stilwell, G. R., 1938, An experimental study of the rate of a moving atomic clock. Journal of the Optical Society of America. 28 (7): 215.
 
[9]  Ives, H. E.; Stilwell, G. R., 1941, An experimental study of the rate of a moving atomic clock II. Journal of the Optical Society of America. 31 (5): 369.
 
[10]  Sfarti, A. 2010, Comment on “The case of absence of transverse Doppler effect”, IEEE Instrumentation and Measurement, 59(2): 494-495.
 
[11]  Cheng, T., 2005, Relativity, Gravitation and Cosmology, Oxford University Press.
 
[12]  Schutz, B., A first course in general relativity, 2nd edition, Cambridge university press.
 
[13]  Chou, C. W. Hume, D. B. Rosenband, T. and Wineland, D. J. 2010, Optical Clocks and Relativity, Science, 329(5999): 1630-1633.
 
[14]  Rosenband, T., D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Winelandand, J. C. Bergquist, 2008, Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place, Science, 319: 1808-1812.
 
[15]  Dyson, F. W., A. S. Eddington, C. Davidson, 1920, A determination of the deflection of light by the Sun’s gravitational field from observations made at the total eclipse of May 29, 1919, Phil. Trans. R. Soc. Lond. A 220, 291-333.
 
[16]  Wang, Qian-shen, Yang, Xin-she, Wu, Chuan-zhen, Guo, Hong-gang, Liu, Hong-chen, and Hua, Chang-chai, 2000, Precise measurement of gravity variations during a total solar eclipse, Phys. Rev. D 62, 041101(R).
 
[17]  Hulse, R. A., Taylor, J. H., 1975, Discovery of a pulsar in a binary system, Astrophysical Journal, Vol. 195, p. L51-L53.
 
[18]  Damour, T., Deruelle, N., 1986, General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula, Ann. Inst. Henri Poincaré Phys. Théor., 44(3): 263-292.
 
[19]  Taylor, J. H., Weisberg, J. M., 1989, Further Experimental Tests of Relativistic Gravity Using the Binary Pulsar PSR 1913+16, Astrophysical Journal 345: 434.
 
[20]  Weisberg, J., & Taylor, J. H. 2003, The relativistic binary pulsar B1913+16, in ASP Conf. Ser. 302, Radio Pulsars, ed. M. Bailes, D. J. Nice, & S. E. Thorsett (San Francisco: ASP), 93.
 
[21]  Stairs, I. H., S. E. Thorsett, and Z. Arzoumanian. Measurement of Gravitational Spin-Orbit Coupling in a Binary-Pulsar System, Phys. Rev. Lett. 93, 141101.
 
[22]  Hilborn, R., 2018, Gravitational waves from orbiting binaries without general relativity, American Journal of Physics, 86, 186-197.