International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2022, 10(2), 102-110
DOI: 10.12691/ijp-10-2-3
Open AccessArticle

The Substantive Characteristics of Layered PbX (X=S, Se, and Te) Compounds: An ab-inito Investigations

Humaira Takia1, , Md. Afjalur Rahman2, Rahman Moshiur3, M.M. Rahaman4 and Khokon Hossen1

1Department of Physics and Mechanical Engineering, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh

2Department of Physics, Pabna University of Science and Technology, Pabna-6600, Bangladesh

3Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

4Department of Mathematics, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh

Pub. Date: April 08, 2022

Cite this paper:
Humaira Takia, Md. Afjalur Rahman, Rahman Moshiur, M.M. Rahaman and Khokon Hossen. The Substantive Characteristics of Layered PbX (X=S, Se, and Te) Compounds: An ab-inito Investigations. International Journal of Physics. 2022; 10(2):102-110. doi: 10.12691/ijp-10-2-3

Abstract

In the impending lesson, we explore the substantive features of PbX (S, Se and Te) such as structural, elastic, electronic and optical properties using first principle calculations based on the density functional theory. Generalized gradient approximation (GGA-PBEsol) is used as an exchange-correlation functional for the structural properties of the different crystal phases. For all phases, the optimized lattice parameters display a strong covenant with the available experimental data. The three independent elastic constants (C11, C12, and C44) for all three compounds are positive and fulfill the Born stability criteria, which ensures that all phases possess the mechanical stability in nature. The most significant elastic properties like Bulk modulus (B), shear modulus (G), Young’s modulus (Y), Poisson’s ratio (ν) and elastic anisotropy (A) of the cubic-type structure of PbX (X=S, Se and Te) are estimated and observed under ambient pressure. The Cauchy pressure and Pugh’s ratio reveals that all compounds exhibit brittle nature and the band structure analysis ensures the semi-metallic character with a narrow band gap of all these phases. The obtained values of band gap are 0.23 for PbS, 0.15 eV for PbSe, and 0.58 eV for PbTe respectively. At last, it has been obtained and smeared the several optical properties such as absorption, conductivity, reflectivity, loss function, dielectric function and refractive index at the polarization vector [100] of PbX (X=S,Se and Te) in details. The higher reflectivity spectra of these compounds in the Infrared and ultraviolet regions demonstrate promise as excellent shielding materials for avoiding solar heating.

Keywords:
Pb-based compounds first principle study density functional theory generalized gradient approximation pseudo-potential geometry optimization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Mun Wong, K., Alay-e-Abbas, S. M., Shaukat, A., Fang, Y., & Lei, Y., “First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces,” Journal of Applied Physics, 113(1), 014304.2013.
 
[2]  Mun Wong, K., Alay-e-Abbas, S. M., Fang, Y., Shaukat, A., & Lei, Y., “Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: an investigation combining confocal microscopy and first principles calculations,” Journal of Applied Physics, 114(3), 034901.2013.
 
[3]  Dalven, R., “Electronic Structure of PbS, PbSe, and PbTe,” In Solid State Physics (Vol. 28, pp. 179-224). Academic Press.1974.
 
[4]  L. K. Y. R. T. S. BA Efimova, “Thermoelectric Figure of Merit of N-Type PbTe,” Sov. Phys. Semicond, vol. 4, p. 1653, 1971.
 
[5]  Oh, S. J., Berry, N. E., Choi, J. H., Gaulding, E. A., Paik, T., Hong, S. H., ... & Kagan, C. R., “Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance,” ACS nano, 7(3), 2413-2421. 2013.
 
[6]  Biswas, K., He, J., Blum, I. D., Wu, C. I., Hogan, T. P., Seidman, D. N., ... & Kanatzidis, M. G., “High-performance bulk thermoelectrics with all-scale hierarchical architectures,” Nature, 489(7416), 414-418.2012.
 
[7]  Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., ... & Snyder, G. J., ”Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states ,” Science, 321(5888), 554-557.2008.
 
[8]  Girard, S. N., He, J., Zhou, X., Shoemaker, D., Jaworski, C. M., Uher, C., ... & Kanatzidis, M. G., ”High performance Na-doped PbTe–PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures,” Journal of the American Chemical Society, 133(41), 16588-16597.2011.
 
[9]  Aerts, M., Bielewicz, T., Klinke, C., Grozema, F. C., Houtepen, A. J., Schins, J. M., & Siebbeles, L. D., “Highly efficient carrier multiplication in PbS nanosheets,” Nature communications, 5(1), 1-5. 2014.
 
[10]  Qadri, S. B., Singh, A., & Yousuf, M., “Structural stability of PbS films as a function of temperature,” Thin Solid Films, 431, 506-510. 2003.
 
[11]  Leitsmann, R., Bechstedt, F., Groiss, H., Schäffler, F., Heiss, W., Koike, K., ... & Yano, M., “Structural and electronic properties of PbTe (rocksalt)/CdTe (zinc-blende) interfaces,” Applied surface science, 254(1), 397-400.2007.
 
[12]  Paul, A., & Klimeck, G.,”Atomistic study of electronic structure of PbSe nanowires,” Applied Physics Letters, 98(21), 212105. 2011.
 
[13]  Zhang, Y., Ke, X., Chen, C., Yang, J., & Kent, P. R. C., “Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study,” Physical review B, 80(2), 024304.2009.
 
[14]  Kohn, W., & Sham, L. J., “Self-consistent equations including exchange and correlation effects,” Physical review, 140(4A), A1133.1965.
 
[15]  Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K., & Payne, M. C., “First principles methods using CASTEP,” Zeitschrift für kristallographie-crystalline materials, 220(5-6), 567-570. 2005.
 
[16]  Perdew, J. P., Burke, K., & Ernzerhof, M., “Generalized gradient approximation made simple,” Physical review letters, 77(18), 3865. 1996.
 
[17]  Monkhorst, H. J., & Pack, J. D. (1976), “Special points for Brillouin-zone integrations,” Physical review B, 13(12), 5188. 1976.
 
[18]  Han, G., Zhang, R., Popuri, S. R., Greer, H. F., Reece, M. J., Bos, J. W. G., ... & Gregory, D. H., “Large-scale surfactant-free synthesis of p-Type SnTe nanoparticles for thermoelectric applications,” Materials, 10(3), 233. 2017.
 
[19]  Edrees, S. J., Shukur, M. M., & Obeid, M. M., “First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph,” Computational Condensed Matter, 14, 20-26.2018.
 
[20]  E. I. A. a. T. C. Chibueze, “Ab-initio study of structural, elastic, electronic and vibrational properties of PbSe in the rock-salt structure,” Adamawa State University Journal of Scientific Research, vol. 7, no. 2, p. 205, 2019.
 
[21]  Pettifor, D. G., “Theoretical predictions of structure and related properties of intermetallics,” Materials science and technology, 8(4), 345-349.1992.
 
[22]  W.-C. H. D.-j. L. X.-Q. Z. C.-S. X. X.-J. Y. Yong Liu, “First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure,” Intermetallics, vol. 31, p. 357, 2012.
 
[23]  Z.-j. a. Z. E.-j. a. X. H.-p. a. H. X.-f. a. L. X.-j. a. M. J. Wu, “Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles,” Phys. Rev. B, vol. 76, no. 5, p. 054115, 2007.
 
[24]  Liu, Q. J., Liu, Z. T., Feng, L. P., & Tian, H., “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and α-quartz GeO2,” Solid state sciences, 12(10), 1748-1755.2010.
 
[25]  J. Z. Y. L. Z. N. Z. L. Yong Cao, “First-principles studies of the structural, elastic, electronic and thermal properties of Ni3Si,” Computational Materials Science, vol. 69, p. 40, 2013.
 
[26]  Pfrommer, B. G., Côté, M., Louie, S. G., & Cohen, M. L., “Relaxation of crystals with the quasi-Newton method,” Journal of Computational Physics, 131(1), 233-240.1997.
 
[27]  Schmidt-Kaler, T., ”Numerical data and functional relationships in science and technology,” Landolt-Bornstein, 2, 15-18.1982.
 
[28]  Ni, Y., Liu, H., Wang, F., Liang, Y., Hong, J., Ma, X., & Xu, Z., “PbS crystals with clover-like structure: Preparation, characterization, optical properties and influencing factors,” Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 39(3), 200-206.2004.
 
[29]  Streltsov, S. V., Manakov, A. Y., Vokhmyanin, A. P., Ovsyannikov, S. V., & Shchennikov, V. V., ”Crystal lattice and band structure of the intermediate high-pressure phase of PbSe,” Journal of Physics: Condensed Matter, 21(38), 385501. 2009.
 
[30]  Khan, A. A., Khan, I., Ahmad, I., & Ali, Z., “Thermoelectric studies of IV-VI semiconductors for renewable energy resources,” Materials Science in Semiconductor Processing, 48, 85-94. 2016.
 
[31]  Z. A. S. J. K. Y. A. S. H. a. M. S. Asghar Khan M, “Principle Investigation of Structural, Electronics and Chemical Properties of Sn Doped PbX (X=S, Se, Te),” J Theor Comput Sci, vol. 4.2, 2017.
 
[32]  R. Atikur and R. A. a. R. Zahidur, “First-Principles Calculations of Structural, Electronic and Optical Properties of HfZn2,” Journal of Advanced Physics, vol. Volume 5, no. 4, p. 354, 2016.
 
[33]  Rahman, M. A., Rahaman, M. Z., & Rahman, M. A., “The structural, elastic, electronic and optical properties of MgCu under pressure: A first-principles study,” International Journal of Modern Physics B, 30(27), 1650199. 2016.
 
[34]  Y. L.-H. S. T. a. F. A. J. Saniz R,”Structural, electronic, and optical properties of NiAl3: First-principles calculations,” Physical Review B, vol. 74, no. 1, p. 014209, 2006.
 
[35]  Zhang, Y., Ke, X., Chen, C., Yang, J., & Kent, P. R. C., “Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study,” Physical review B, 80(2), 024304. 2009.