International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2022, 10(1), 70-78
DOI: 10.12691/ijp-10-1-6
Open AccessArticle

Structural, Electronic and Mechanical Properties of Re Doped FeMnP0.67A0.33 (A=Ga and Ge): A DFT Study

Gabriel Kipkemei Chirchir1, Winfred Mueni Mulwa1, and Bamidele Ibrahim Adetunji2

1Department of Physics, Egerton University, P.0. Box 536-20115 Egerton, Kenya

2Department of Physical Sciences, Bells University of Technology, Ota, Nigeria

Pub. Date: February 11, 2022

Cite this paper:
Gabriel Kipkemei Chirchir, Winfred Mueni Mulwa and Bamidele Ibrahim Adetunji. Structural, Electronic and Mechanical Properties of Re Doped FeMnP0.67A0.33 (A=Ga and Ge): A DFT Study. International Journal of Physics. 2022; 10(1):70-78. doi: 10.12691/ijp-10-1-6

Abstract

The structural, electronic and mechanical properties of Re doped FeMnP0.67A0.33 (A= Ga and Ge) were examined by use of density functional theory (DFT) within the generalized gradient approximations as demonstrated in Quantum ESPRESSO code. The optimized structural parameters as well as derived lattice parameters are in consistent with other computational and achievable experimental results. The computed independent elastic constants confirm the mechanical stability of the investigated materials. The computed Poisson’s and Pugh’s ratios as well as Cauchy pressure, verify that FeMn0.67Re0.33P0.67Ga0.33 is the most ductile among the studied compounds. The calculated values of bulk modulus, shear modulus and Young’s modulus confirm high values of bond strength, hardness and stiffness of the investigated materials respectively. Therefore, the four compounds considered may be appropriate for industrial applications. The results report that FeMn0.67Re0.33P0.67Ga0.33 compound is more ductile and mechanically stable compared to other investigated compounds. This is the first qualitative computational prediction of the elastic properties of FeMnP0.67Ge0.33, FeMnP0.67Ga0.33, FeMn0.67Re0.33P0.67Ge0.33 and FeMn0.67Re0.33P0.67Ga0.33 compounds and this awaits experimental ratification. The calculated electronic density of states confirms that the Re_2p states are located in the conduction band (CB) in the unite cell while Re_3d dominate the CB in the supercell. Results from the doped compounds could not be compared with experimental or computational findings because to the best of our knowledge, this has not been done.

Keywords:
DFT doping ductility electronic density of states mechanical stability elastic constants

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Roy, P., Brück, E., & de Groot, R. A. (2016). Latent heat of the first-order magnetic transition of MnFeSi 0.33 P 0.66. Physical Review. 93(16), 165101-165111.
 
[2]  Ou, Z. Q., Dung, N. H., Zhang, L., Caron, L., Torun, E., Van Dijk, N. H., & Brück, E. (2018). Transition metal substitution in Fe2P-based MnFe0.95P0.50 Si 0.50 magnetocaloric compounds. Journal of Alloys and Compounds. 730, 392-398.
 
[3]  Wurentuya, B., Yibole, H., Guillou, F., Ou, Z., Zhang, Z., & Tegus, O. (2018). First-order magnetic transition, magnetocaloric effect and moment formation in MnFe (P, Ge) magnetocaloric materials revisited by x-ray magnetic circular dichroism. Condensed Matter. 544, 66-72.
 
[4]  Miao, X. F., Hu, S. Y., Xu, F., & Brück, E. (2018). Overview of magnetoelastic coupling in (Mn, Fe) 2 (P, Si)-type magnetocaloric materials. Rare Metals. 37(9), 723-733.
 
[5]  He, A., Svitlyk, V., & Mozharivskyj, Y. (2017). Synthetic approach for (Mn, Fe) 2 (Si, P) magnetocaloric materials: purity, structural, magnetic, and magnetocaloric properties. Inorganic chemistry. 56(5), 2827-2833.
 
[6]  Trung, N. T., Ou, Z. Q., Gortenmulder, T. J., Tegus, O., Buschow, K. H., and Brück, E., (2010). Tunable thermal hysteresis in MnFePGe compounds. Journal of Physics Applied Physics. 670-676.
 
[7]  Liu, D., Yue, M., Zhang, J., McQueen, T. M., Lynn, J. W., Wang, X., & Altounian, Z. (2009). Origin and tuning of the magnetocaloric effect in the magnetic refrigerant Mn 1.1 Fe 0.9 (P 0.8 Ge 0.2). Physical Review. 79, 014435-014445.
 
[8]  Su, L., Lei, S., Liu, L., Liu, L., Zhang, Y., Shi, S., & Yan, X. (2018). Sprinkling MnFe 2 O 4 quantum dots on nitrogen-doped graphene sheets: the formation mechanism and application for high-performance supercapacitor electrodes. Journal of Materials Chemistry A. 6(21), 9997-10007.
 
[9]  Sepehri-Amin, H., Taubel, A., Ohkubo, T., Skokov, K. P., Gutfleisch, O., & Hono, K. (2018). Microstructural origin of hysteresis in Ni-Mn-In based magnetocaloric compounds. Acta Materialia. 147, 342-349.
 
[10]  Ma, L., Guillou, F., Yibole, H., Miao, X. F., Lefering, A. J. E., Rao, G. H., & Brück, E. (2015). Structural, magnetic and magnetocaloric properties of (Mn, Co) 2 (Si, P) compounds. Journal of Alloys and Compounds. 625, 95-100.
 
[11]  Ma, S., Wurentuya, B., Wu, X., Jiang, Y., Tegus, O., Guan, P., & Narsu, B. (2017). Ab initio mechanical and thermal properties of FeMnP1−x Gax compounds as refrigerant for room-temperature magnetic refrigeration. Royal Society Chemistry Advances. 7(44), 27454-27463.
 
[12]  Brück, E., Trung, N. T., Ou, Z. Q., & Buschow, K. H. J. (2012). Enhanced magnetocaloric effects and tunable thermal hysteresis in transition metal pnictides. Scripta Materialia. 67(6), 590-593.
 
[13]  Xu, H., Yue, M., Zhao, C., Zhang, D., & Zhang, J. (2012). Structure and magnetic properties of Mn 1.2 Fe 0.8 P 0.76 Ge 0.24 annealed alloy. Rare Metals. 31(4), 336-338.
 
[14]  Cam Thanh, D.T., Brück, E., Trung, N.T., Klaasse, J.C.P., Buschow, K.H.J., Ou, Z.Q., Tegus, O., Caron, L (2008). Structure, magnetism, and magnetocaloric properties of MnFeP1−xSix compounds. Journal of Applied Physics. 103,318-323.
 
[15]  W. Kohn & L. J. Sham (1964). Physics. Review. 385, 1133-1155.
 
[16]  Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., & Dal Corso, A. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics, Condensed matter. 21(39), 395502-395509.
 
[17]  Baroni, S., Dal Corso, A., De Gironcoli, S., Giannozzi, P., Cavazzoni, C., Ballabio, G., & Kokalj, A. (2005). Quantum ESPRESSO: open-source package for research in electronic structure, simulation, and optimization.
 
[18]  Baroni, S., Dal Corso, A., de Gironcoli, S., & Giannozzi, P. (2001). PWSCF and PHONON: Plane-wave pseudo-potential codes.
 
[19]  Perdew, J. P., Burke, K., & Ernzerhof, M. (1998). Perdew, Burke, and Ernzerhof reply. Physical Review Letters, 80(4), 891.
 
[20]  Kresse, G., & Joubert, D., (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physic. Review. 59, 1758-1775.
 
[21]  Zhang, H., Li, R., Cai, Z., Gu, Z., Heidari, A. A., Wang, M., ... & Chen, M. (2020). Advanced orthogonal moth flame optimization with Broyden–Fletcher–Goldfarb–Shanno algorithm: Framework and real-world problems. Expert Systems with Applications, 159, 113617.
 
[22]  Monkhorst, H.J., Pack, & J.D., (1976). Special points for Brillouin-zone integrations. Physics Review.
 
[23]  Kohn, W., Sham, L.J., (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physics Review. 140, 1133-1138.
 
[24]  Motornyi, O., Raynaud, M., Dal Corso, A., & Vast, N. (2018, December). Simulation of electron energy loss spectra with the TurboEELS and Thermo_PW codes. In Journal of Physics: Conference Series .11369(1).
 
[25]  Dal Corso, A. (2016). Elastic constants of beryllium: a first-principles investigation. Journal of Physics: Condensed Matter. 28(7), 075401.
 
[26]  Adetunji, B. I., Adebambo, P. O., Bamgbose, M. K., Musari, A. A., & Adebayo, G. A. (2019). Predicting the elastic, phonon and thermodynamic properties of cubic HfNiX (X= Ge and Sn) Half Heulser alloys: a DFT study. The European Physical Journal B, 92(10), 1-7.
 
[27]  Yue, M., Li, Z. Q., Xu, H., Huang, Q. Z., Liu, X. B., Liu, D. M., & Zhang, J. X. (2010). Effect of annealing on the structure and magnetic properties of Mn 1.1 Fe 0.9 P 0.8 Ge 0.2 compound. Journal of Applied Physics. 107(9), 939-950.
 
[28]  Cam Thanh, D. T., Brück, E., Tegus, O., Klaasse, J. C. P., Gortenmulder, T. J., & Buschow, K. H. J. (2006). Magnetocaloric effect in MnFe (P, Si, Ge) compounds. Journal of Applied Physics. 99(8), 107.
 
[29]  Fast, L., Wills, J. M., Johansson, B., & Eriksson, O. (1995). Elastic constants of hexagonal transition metals. Physical Review B. 51(24), 17431-17441.
 
[30]  Milman, V., Winkler, B., & Probert, M. I. J. (2005). Stiffness and thermal expansion of ZrB2: an ab initio study. Journal of physics. Condensed matter. 17(13), 2233.
 
[31]  Milman, V., & Warren, M. C. (2001). Elastic properties of TiB2 and MgB2. Journal of Physics: Condensed Matter. 13(24), 5585.
 
[32]  Birch, F. (1947). Finite elastic strain of cubic crystals. Physical review. 71(11), 809.
 
[33]  Wallace, D. C. (1972). Thermodynamics of crystals. American Journal of Physics. 40(11), 1718-1719.
 
[34]  Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure of α− Pt 2 Si and PtSi. Physical Review B. 63(13), 134112.
 
[35]  Christopoulos, S. R., Filippatos, P. P., Hadi, M. A., Kelaidis, N., Fitzpatrick, M. E., & Chroneos, A. (2018). Intrinsic defect processes and elastic properties of Ti3AC2 (A= Al, Si, Ga, Ge, In, Sn) MAX phases. Journal of Applied Physics. 123(2), 025103.
 
[36]  Born, M. (1940, April). On the stability of crystal lattices. I. In Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University.36 (2)160-172.
 
[37]  Voigt, W. J. T. L. (1928). A determination of the elastic constants for beta-quartz lehrbuch de kristallphysik. Terubner Leipzig, 40, 2856-2860.
 
[38]  Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349.
 
[39]  Reuss, A. J. Z. A. M. M. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49-58.
 
[40]  Eberhart, M. E., & Jones, T. E. (2012). Cauchy pressure and the generalized bonding model for nonmagnetic bcc transition metals. Physical Review B. 86(13), 134106.
 
[41]  Nguyen-Maxh, D., Pettifor, D. G., Znam, S., & Vitek, V. (1997). Negative Cauchy pressure within the tight-binding approximation. MRS Online Proceedings Library (OPL). 491, 1-4.
 
[42]  Pugh, S. F. (1954). Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 45, 823-843.
 
[43]  Frantsevich, I. N. (1982). Elastic constants and elastic moduli of metals and insulators. Reference book.
 
[44]  Korzhavyi, P. A., Vitos, L., Andersson, D. A., & Johansson, B. (2004). Oxidation of plutonium dioxide. Nature Materials. 3(4), 225-228.