International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2022, 10(1), 23-48
DOI: 10.12691/ijp-10-1-2
Open AccessArticle

Doubly-Excited 1,3Se, 1,3P0, 1,3De, 1,3F0 and 1,3Ge Resonances States of Two-Electron Atoms below the N = 3 – 8 Hydrogenic Thresholds

M.T. Gning1, and I. Sakho1

1Department of Physics Chemistry, UFR Sciences and Technologies, University of Thies, Thies, Senegal

Pub. Date: January 23, 2022

Cite this paper:
M.T. Gning and I. Sakho. Doubly-Excited 1,3Se, 1,3P0, 1,3De, 1,3F0 and 1,3Ge Resonances States of Two-Electron Atoms below the N = 3 – 8 Hydrogenic Thresholds. International Journal of Physics. 2022; 10(1):23-48. doi: 10.12691/ijp-10-1-2

Abstract

In this paper we present accurately calculated data on the resonance parameters (resonance energy and excitation energies) of the doubly excited singlet and triplet states 1,3Se, 1,3P0, 1,3De, 1,3F0 and 1,3Ge of helium and helium-like ions (Z = 2 – 10) located below the hydrogenic thresholds N = 3 – 8, using the variational method of the Screening Constant per Unit Nuclear Charge (SCUNC) formalism. These energies are calculated using special form wave functions of the Hylleraas type and a real Hamiltonian. The results obtained are in very good agreement with the experimental and theoretical values available in the literature. The results for the energies of the doubly excited 1,3Se, 1,3P0, 1,3De, 1,3F0 and 1,3Ge states associated with hydrogenic thresholds up to N = 8 listed for the first time in this paper may provide a useful guideline for future experimental and theoretical studies in the autoionization states of two-electron systems.

Keywords:
helium-like systems energy resonances excitation energy screening constant by unit nuclear charge (SCUNC) doubly excited states hylleraas type wave function

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Gning M. T., Sakho I., Sow M. Calculations Energy of the (nl2) 1Lπ Doubly Excited States of Two – Electron Systems via the Screening Constant by Unit Nuclear Charge Formalism. J. Mod. phys. 11, 1891-1910 (2020).
 
[2]  Gning M T, Sakho I, et al. Variational Calculations of Energies of the (2snl) 1,3Lπ and (2pnl) 1,3 Lπ Doubly Excited States in Two-Electron Systems Applying the Screening Constant per Unit Nuclear Charge. J. Mod. phys. 12, 328-352 (2021).
 
[3]  Kharchenko, V. et al. Modeling spectra of the north and south Jovian X-ray auroras. J. Geophys. Res. 113, A08229 (2008).
 
[4]  Walker Jr. A.B.C., Rugge, H.R. Observation of Autoionizing States in the Solar Corona .Astrophys. J. 164, 181 (1971).
 
[5]  Gabriel, A.H. Jordan, C. Interpretation of spectral intensities from laboratory and astrophysical plasmas in Case Studies in Atomic Collision Physics, edited by E. W. McDaniel and M. R. McDowell (North-Holland, Amsterdam), Vol. 2 (1972).
 
[6]  Fujimoto, T. Kato, T. Emission-line intensity of helium-like ions from the solar corona-excitation cross section and plasma state. Astrophys. J. 246, 994 (1981).
 
[7]  Read, F. H. A New Class of Atomic States: The 'Wannier-ridge' Resonances. Aust. J. Phys. 35, 475(1982).
 
[8]  Rau, A. R. P. A new Bohr-Rydberg spectrum of two-electron states. J. Phys. B 16, L699 (1983).
 
[9]  Dmitrieva I. K. and Plindov, G. I. Electron correlation in doubly excited S states: large-Z limit. J. Phys. B 21, 3055 (1988).
 
[10]  Madden, R.P. Codling, K. New Autoionizing Atomic Energy Levels in He, Ne, and Ar. Phys. Rev. Lett. 10, 516 (1963).
 
[11]  Madden R. P. and Codling K. Astrophys. J. 141, 364 (1965).
 
[12]  Hylleraas E. A. Über den Grundzustand des Heliumatoms. Z. Phys. 48, 469 (1928).
 
[13]  Hylleraas E. A. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys. 54, 347 (1929).
 
[14]  Hylleraas E. A. Über den Grundterm der Zweielektronenprobleme von H, He, Li+, Be++ usw. Z. Phys. 65, 209 (1930).
 
[15]  Hylleraas E. A. and Undheim B. Numerische Berechnung der 2S-Terme von Ortho- und Par-Helium. Z. Phys. 65, 759-772 (1930).
 
[16]  Chpolski E., Physique Atomique, Tome 2, Édition Mir Moscou Chap.6, p. 239 (1978).
 
[17]  Slater J.C., Atomic Shielding Constants. Phys. Rev. 36, 57 (1930).
 
[18]  Minkine V., Simkine B., et Minianev R., Théorie de la structure moléculaire, Editions Mir Moscou (1979).
 
[19]  Sakho, I. The Screening Constant by Unit Nuclear Charge Method, Description & Application to the Photoionization of Atomic Systems, ISTE Science Publishing Ltd., London, and John Wiley & Sons, Inc. USA. ISBN: 978-1-119-47694-8 (2018).
 
[20]  Roy K A., Singh R., and Deb M B. Density-functional calculations for doubly excited states of He, Li+, Be2+ and B3+(1,3Se, 3P0, 1,3De, 1,3p0, 1Ge) . J. of Phy. B: At. Mol. Opt. Phys. 30, 4763 (1997).
 
[21]  Ho Y K. Resonances in helium atoms associated with the N= 4 and N = 5 He+ thresholds. Z. Phys. D 11, 277 (1989).
 
[22]  Ray D and Mukherjee P K. Doubly excited 1Se, 1De and 1Ge states of He, Li+, Be2+ and B3+. J. Phys. B: At. Mol. Opt. Phys. 24, 1241 (1991).
 
[23]  Bachau H., Martin F., Riera A and Yanez M. Resonance Parameters and Properties of Helium-Like Doubly Excited States 2 ≤ z ≤ 10. At. Data Nucl. Data Tables 48, 167 (1991).
 
[24]  Lipsky L., Anania R and Conneely M .Energy levels and classifications of doubly-excited states in two-electron systems with nuclear charge, Z = 1, 2, 3, 4, 5, below the N = 2 and N = 3 thresholds. J. At. Data Nucl. Data Tables 20 127 (1977).
 
[25]  Pekeris C.L. Ground State of Two-Electron Atoms. Phys. Rev. 112, 1649 (1958).
 
[26]  Sakho I., Konté A., Ndao A. S., Biaye M. and Wagué A. Calculations of (nl2) and (3lnl’) autoionizing states in two-electron systems. Phys. Scr. 82, 035301 (2010).
 
[27]  Ivanov I. A. and Safronova U. I. Calculation of the Correlation Part of the Energy of Two-Electron System. Opt. Spektrosk. 75, 506 (1993).
 
[28]  Ho Y K and Bhatia A K. Complex-coordinate calculation of 1,3D resonances in two-electron systems. Phys. Rev. A 44, 2895 (1991).
 
[29]  Ray D., Sugawara M., Fujimura Y., Das A. K. et al. Doubly excited 1F0 states of two-electron ions - a time-dependent variation-perturbation calculation .Phys. Lett. A 169, 452 (1992).
 
[30]  Fukuda H., Koyama N. and Matsuzawa M. High-lying doubly excited states of H- and He. J. Phys. B: At. Mol. Phys. 20, 2959 (1987).
 
[31]  Herrick D.R., Sinanoglu O. Comparison of doubly-excited helium energy levels, isoelectronic series, autoionization lifetimes, and group-theoretical configuration-mixing predictions with large-configuration-interaction calculations and experimental spectra. Phys. Rev. A 11, 97 (1975).
 
[32]  Frankowski F. and Pekeris C. L. Logarithmic Terms in the Wave Functions of the Ground State of Two-Electron Atoms. Phys. Rev. 146, 46 (1966).
 
[33]  Koyama N., et al. Doubly excited 1Se states of H- and He below the N hydrogenic thresholds with N6. J. Phys. B: At. Mol. Phys. 19 L331 (1986).
 
[34]  Das A. K., Ghosh T. K. and Mukherjee P. K. Doubly excited 3Se, 3De and 3Ge states of two-electron atomic systems. Theor. Chim. Acta 89, 147 (1994).
 
[35]  Shearer-Izumi W. . At. Data Nucl. Data Tables 20, 531 (1977).
 
[36]  Mukherji A. Radial correlation in atoms H-, He I – O VII. Pramana 2, 54 (1974).