International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2021, 9(2), 125-138
DOI: 10.12691/ijp-9-2-7
Open AccessArticle

Molecular Dynamics Research of a Carbon Nanotube-buckyball Enabled Energy Attraction System

Mohammad Daud Ahmadzai1,

1Head of Physics Department, Faculty of Electro Mechanic Kabul Polytechnic University (KPU), Kabul, Afghanistan

Pub. Date: March 28, 2021

Cite this paper:
Mohammad Daud Ahmadzai. Molecular Dynamics Research of a Carbon Nanotube-buckyball Enabled Energy Attraction System. International Journal of Physics. 2021; 9(2):125-138. doi: 10.12691/ijp-9-2-7

Abstract

An energy attraction system (EAS) composed of a carbon nanotube (CNT) with nested buckyballs is put forward for energy excess during impact owing to the outstanding mechanical attributes of both CNTs and buckyballs. Here we perform a series of molecular dynamics (MD) simulations to investigate the energy attraction capabilities of several different EASs based on a diversity of design parameters. For example, the effects of impact energy, the number of nested buckyballs, and of the size of the buckyballs are analyzed to optimize the energy attraction capability of the EASs by tuning the pertinent design parameters. Simulation results indicate that the energy attraction capability of the EAS is closely associated with the deformation characteristics of the confined buckyballs. A low impact energy leads to retrievable deformation of the buckyballs and the dissipated energy is mainly converted to thermal energy. However, a high impact energy yields non-retrievable deformation of buckyballs and thus the energy dissipation is dominated by the strain energy of the EAS. The simulation results also reveal that there exists an optimum value of the number of buckyballs for an EAS under a given impact energy. Larger buckyballs are able to disfigure to a larger degree yet also need less impact energy to induce plastic deformation, therefore performing with a better overall energy attraction ability. Overall, the EAS in this study shows a remarkably high energy attraction density of 2 kJ g-1, it is a promising candidate for mitigating impact energy and sheds light on the research of buckyball filled CNTs for another applications.

Keywords:
Carbon nanotube (CNT) buckyball energy Molecular dynamics (MD) effects attraction.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  V. U. Unnikrishnan, G. U. Unnikrishnan, J. N. Reddy and F. Rostam-Abadi, Int. J. Mech. Mater. Des., 2013, 9, 181-189.
 
[2]  L. Sun, R. F. Gibson, F. Gordaninejad and J. Suhr, Compos. Sci. Technol., 2009, 69, 2392-2409.
 
[3]  N. Jones, Int. J. Impact Eng., 1993, 13, 161.
 
[4]  S. R. Reid, Int. J. Mech. Sci., 1993, 35, 177.
 
[5]  S. Ramakrishna, Mater. Des., 1997, 18, 167-173.
 
[6]  R. A. Alia, Z. Guan, N. Jones and W. J. Cantwell J. Sandwich Struct. Mater., 2015, 17, 74-94.
 
[7]  S. Shahbeyk, A. Vafai and N. Petrinic, Thin-Walled Structures, 2005, 43, 1818-1830.
 
[8]  S. L. Lopatnikov, B. A. Gama, M. J. Haque, C. Krauthauser, J. W. Gillespie, M. Guden and I. W. Hall, Compos. Struct., 2003, 61, 61-71.
 
[9]  S. Gordon, R. Boukhili and N. Merah, J. Sandwich Struct. Mater., 2014, 16, 551-574.
 
[10]  M. Li, X. Cao and Y. Luo, Iran. Polym. J., 2014, 23, 775-781.
 
[11]  M. I. Thiyahuddin, Y. T. Gu, D. P. Thambiratnam andH. M. Thilakarathna, Int. J. Impact Eng., 2014, 72, 26-39.
 
[12]  A. Kolopp, S. Rivallant and C. Bouvet, Int. J. Impact Eng., 2013, 61, 24-35.
 
[13]  M. A. Mousa and N. Uddin, ACI Mater. J., 2014, 111, 99-109.
 
[14]  S. Sachse, M. Poruri, F. Silva, S. Michalowski, K. Pielichowski and J. Njuguna, J. Sandwich Struct. Mater., 2014, 16, 173-194.
 
[15]  Y. O. Shen, F. J. Yang, W. J. Cantwell, S. Balawi and Y. Li,J. Reinf. Plast. Compos., 2014, 33, 11481157.
 
[16]  P. Navarro, S. Marguet, J. F. Ferrero, J. J. Barrau andS. Lemaire, Mech. Adv. Mater. Struct., 2012, 19, 523-529.
 
[17]  S. K. Garcia-Castillo, B. L. Buitrago and E. Barbero, Polym.Compos., 2011, 32, 290-296.
 
[18]  A. Argento, W. Kim, E. C. Lee, A. M. Harris and D. F. Mielewski, Polym. Compos., 2011, 32, 1423-1429.
 
[19]  J. Feuchtwanger, M. L. Richard, Y. J. Tang, A. E. Berkowitz, R. C. O’Handley and S. M. Allen, J. Appl. Phys., 2005, 97, 10M319.
 
[20]  G. C. Jacob, J. M. Starbuck, S. Simunovic and J. F. Fellers, Polym. Compos., 2003, 24, 706-715.
 
[21]  Y. Liu and X.-L. Gong, Trans. Nonferrous Met. Soc. China, 2006, 16, S439-S443.
 
[22]  M. Mahendran, J. Feuchtwanger, R. Techapiesancharoenkij, D. Bono and R. C. O’Handley, J. Magn. Magn. Mater., 2011, 323, 1098-1100.
 
[23]  Q. Zhang, E. Uchaker, S. L. Candelaria and G. Cao, Chem.Soc. Rev., 2013, 42, 3127-3171.
 
[24]  H. T. Beyene, V. S. K. Chakravadhanula, C. Hanisch,M. Elbahri, T. Strunskus, V. Zaporojtchenko, L. Kienle andF. Faupel, J. Mater. Sci., 2010, 45, 5865-5871.
 
[25]  S. Coulombe, J. L. Meunier, N. Hordy, L. Jorge, L. Vandsburgerand P. Roche, Google Patents, 2014.
 
[26]  H. T. Beyene, V. S. K. Chakravadhanula, C. Hanisch,T. Strunskus, V. Zaporojtchenko, M. Elbahri and F. Faupel, Plasmonics, 2012, 7, 107-114.
 
[27]  J. C. Viana, Plast., Rubber Compos., 2006, 35, 260-267.
 
[28]  A. K. Al-Qananwah, J. Koplik and Y. Andreopoulos, Phys. Fluids, 2013, 25, 076102.
 
[29]  G. Cao, J. Phys. Chem. C, 2012, 116, 8278-8286.
 
[30]  F. B. Surani, X. Kong, D. B. Panchal and Y. Qiao, Appl. Phys. Lett., 2005, 87, 163111.
 
[31]  D. Weidt, L. Figiel, M. Buggy, International Conference on Structural Nano Composites (Nanostruc 2012), 2012, p. 40.
 
[32]  Z. Antar, J.-F. Feller and G. Vignaud, Polym. Adv. Technol.,2013, 24, 638-645.
 
[33]  Q. Chen, W. Wu, Y. Zhao, M. Xi, T. Xu and H. Fong,Composites, Part B, 2014, 58, 43-53.
 
[34]  X. Wang, X. Wang and L. Hu, Asian J. Chem., 2013, 25,5798-5800.
 
[35]  K. Yu, Y. Liu and J. Leng, RSC Adv., 2014, 4, 2961-2968.
 
[36]  X. Zhou, L. Shen, L. Li, S. Zhou, T. Huang, C. Hu, W. Pan,X. Jing, J. Sun, L. Gao and Q. Huang, J. Eur. Ceram. Soc.,2013, 33, 2119-2126.
 
[37]  E. I. Bagrii and E. N. Karaulova, Pet. Chem., 2001, 41, 295-313.
 
[38]  N. F. Gol’dshleger and A. P. Moravskii, Pet. Chem., 2000, 40,365-377.
 
[39]  S. V. Kozyrev and V. V. Rotkin, Semiconductors, 1993, 27,777-791.
 
[40]  L. Lattanzi, L. De Nardo, J. R. Raney and C. Daraio, Adv. Eng. Mater., 2014, 16, 1026-1031.
 
[41]  X. Gui, Z. Zeng, Y. Zhu, H. Li, Z. Lin, Q. Gan, R. Xiang, A. Cao and Z. Tang, Adv. Mater., 2014, 26, 1248-1253.
 
[42]  L. Q. Liu, W. J. Ma and Z. Zhang, Small, 2011, 7, 1504-1520.
 
[43]  C. M. Wang, Y. Y. Zhang, Y. Xiang and J. N. Reddy, Appl. Mech. Rev., 2010, 63, 030804.
 
[44]  E. T. Thostenson, Z. F. Ren and T. W. Chou, Compos. Sci.Technol., 2001, 61, 1899-1912.
 
[45]  M. R. Delfani, H. M. Shodja and F. Ojaghnezhad, Philos. Mag., 2013, 93, 2057-2088.
 
[46]  R. S. Ruoff and A. L. Ruoff, Appl. Phys. Lett., 1991, 59, 1553-1555.
 
[47]  Adhikari, S., Chowdury, R., 2010. The calibration of carbon nanotube based bio-nanosensors. J. Appl. Phys. 107, 124322.
 
[48]  A. V. Dyskin, Y. Estrin, A. J. Kanel-Belov and E. Pasternak, Phys. Lett. A, 2003, 319, 373-378. 49 Z. Man, Z. Pan and Y. Ho, Phys.Lett. A, 1995, 209, 53-56.
 
[49]  R. Smith and R. P. Webb, Proc. R. Soc. London, Ser. A, 1993, 441, 495-499.
 
[50]  Z. Zhang, X. Wang and J. Li, Int. J. Smart Nano Mater., 2012, 3, 14-22.
 
[51]  M. Becton, L. Zhang and X. Wang, J. Nanomech. Micromech., 2014, 4, B4014002.
 
[52]  J. Xu, Y. Sun, B. Wang, Y. Li, Y. Xiang and X. Chen, Mech. Res. Commun., 2013, 49, 8-12.
 
[53]  P. M. Costa, P. B. Cachim, U. K. Gautam, Y. Bando and D. Golberg, Nanotechnology, 2009, 20, 405707.
 
[54]  W. Abramowicz and T. Wierzbicki, Int. J. Mech. Sci., 1988, 30, 263-271.
 
[55]  P. M. Costa, U. K. Gautam, M. Wang, Y. Bando and D. Golberg, Carbon, 2009, 47, 541-544.
 
[56]  F. Wolny, U. Weissker, T. Mu ¨hl, A. Leonhardt, S. Menzel, A. Winkler and B. Bu ¨chner, J. Appl. Phys., 2008, 104, 064908.
 
[57]  A. O. Monteiro, P. B. Cachim and P. Costa, Diamond Relat.Mater., 2014, 44, 11-25.
 
[58]  D. M. Anjos, A. I. Kolesnikov, Z. Wu, Y. Cai, M. Neurock, G. M. Brown and S. H. Overbury, Carbon, 2013, 52, 150-157.
 
[59]  L. Xie, Y. Luo, D. Lin, W. Xi, X. Yang and G. Wei, Nanoscale, 2014, 6, 9752-9762.
 
[60]  J. Xu, Y. Li, Y. Xiang and X. Chen, PLoS One, 2013, 8, e64697.
 
[61]  O. V. Kharissova and B. I. Kharisov, RSC Adv., 2014, 4, 30807-30815.
 
[62]  S. Plimpton, J. Comput. Phys., 1995, 117, 1-19.
 
[63]  L. Girifalco and M. Hodak, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65, 125404.
 
[64]  R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus and M. S.Dresselhaus, Chem. Phys. Lett., 2001, 348, 187-193.
 
[65]  S. J. Stuart, A. B. Tutein and J. A. Harrison, J. Chem. Phys., 2000, 112, 6472-6486.
 
[66]  D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, J. Phys.: Condens. Matter, 2002, 14,783-802.
 
[67]  H. Ruan, Z. Gao and T. Yu, Int. J. Mech. Sci., 2006, 48,117-133.
 
[68]  J. Xu, Y. Li, Y. Xiang and X. Chen, Nanoscale Res. Lett., 2013,8, 1-10.