International Journal of Physics
ISSN (Print): 2333-4568 ISSN (Online): 2333-4576 Website: https://www.sciepub.com/journal/ijp Editor-in-chief: B.D. Indu
Open Access
Journal Browser
Go
International Journal of Physics. 2020, 8(1), 29-34
DOI: 10.12691/ijp-8-1-5
Open AccessArticle

Simulating of Boron Atoms Interacting with a (10,0) Carbon Nano Tube: A DFT Study

Ahad Khan Pyawarai1, 2,

1Physics Department, Electromechancs Faculty, Kabul, Afghanistan

2Polytechnics University, Karte-Mamorin, Kabul, Afghanistan

Pub. Date: April 19, 2020

Cite this paper:
Ahad Khan Pyawarai. Simulating of Boron Atoms Interacting with a (10,0) Carbon Nano Tube: A DFT Study. International Journal of Physics. 2020; 8(1):29-34. doi: 10.12691/ijp-8-1-5

Abstract

Using Density functional theory, I report the effects of adsorption and substitution of boron atoms on structural and electrical properties of a (10,0) carbon nanotubes (CNTs). By considering formation energy, I found that the substitution process is an exothermic process. On the opposite the adsorption process has positive formation energy. When CNT was contaminated by boron atoms, boron atoms behave as acceptors. Boron will turn the semiconducting (10,0) CNT into a metallic nanostructure. Boron induced high polarization on the tube. When boron atoms substitute with carbon atoms, the polarization is stronger in comparison when they adsorb with CNT.

Keywords:
density functional theory heavily boron-doped carbon nanotubes band structure formation energy cohesive energy

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Y. Rangom, X. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance, ACS nano, 9 (2015) 7248-7255.
 
[2]  A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review, Composites Part B: Engineering, 77 (2015) 402-420.
 
[3]  L. Yang, M. Anantram, J. Han, J. Lu, Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain, Physical Review B, 60 (1999) 13874.
 
[4]  M. Sankaran, B. Viswanathan, The role of heteroatoms in carbon nanotubes for hydrogen storage, Carbon, 44 (2006) 2816-2821.
 
[5]  L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction, Angewandte Chemie International Edition, 50 (2011) 7132-7135.
 
[6]  W. An, C.H. Turner, Electronic structure calculations of gas adsorption on boron-doped carbon nanotubes sensitized with tungsten, Chemical Physics Letters, 482 (2009) 274-280.
 
[7]  G.-X. Chen, J.-M. Zhang, D.-D. Wang, K.-W. Xu, First-principles study of palladium atom adsorption on the boron-or nitrogen-doped carbon nanotubes, Physica B: Condensed Matter, 404 (2009) 4173-4177.
 
[8]  Y.-H. Li, T.-H. Hung, C.-W. Chen, A first-principles study of nitrogen-and boron-assisted platinum adsorption on carbon nanotubes, Carbon, 47 (2009) 850-855.
 
[9]  M. Shuba, D. Yuko, P. Kuzhir, S. Maksimenko, G. Chigir, A. Pyatlitski, O. Sedelnikova, A. Okotrub, P. Lambin, Localized plasmon resonance in boron-doped multiwalled carbon nanotubes, Physical Review B, 97 (2018) 205427.
 
[10]  M.-H. Yeh, Y.-A. Leu, W.-H. Chiang, Y.-S. Li, G.-L. Chen, T.-J. Li, L.-Y. Chang, L.-Y. Lin, J.-J. Lin, K.-C. Ho, Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction, Journal of Power Sources, 375 (2018) 29-36.
 
[11]  T.-J. Li, M.-H. Yeh, W.-H. Chiang, Y.-S. Li, G.-L. Chen, Y.-A. Leu, T.-C. Tien, S.-C. Lo, L.-Y. Lin, J.-J. Lin, Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction, Sensors and Actuators B: Chemical, 248 (2017) 288-297.
 
[12]  M. Jamshidi, M. Razmara, B. Nikfar, M. Amiri, First principles study of a heavily nitrogen-doped (10, 0) carbon nanotube, Physica E: Low-dimensional Systems and Nanostructures, (2018).
 
[13]  T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures, Physical Review B, 67 (2003) 155108.
 
[14]  T. Ozaki, H. Kino, Numerical atomic basis orbitals from H to Kr, Physical Review B, 69 (2004) 195113.
 
[15]  J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (1997) 3865.
 
[16]  A. Bahari, M. Bagheri, M. Amiri, First principles study of electronic and structural properties of single walled zigzag boron nitride nanotubes doped with the elements of group IV, Solid State Communications, 267 (2017) 1-5.
 
[17]  Y.-T. Li, T.-C. Chen, Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory, Nanotechnology, 20 (2009) 375705.
 
[18]  K. McGuire, N. Gothard, P. Gai, M. Dresselhaus, G. Sumanasekera, A. Rao, Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes, Carbon, 43 (2005) 219-227.