[1] | Y. Rangom, X. Tang, L.F. Nazar, Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance, ACS nano, 9 (2015) 7248-7255. |
|
[2] | A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review, Composites Part B: Engineering, 77 (2015) 402-420. |
|
[3] | L. Yang, M. Anantram, J. Han, J. Lu, Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain, Physical Review B, 60 (1999) 13874. |
|
[4] | M. Sankaran, B. Viswanathan, The role of heteroatoms in carbon nanotubes for hydrogen storage, Carbon, 44 (2006) 2816-2821. |
|
[5] | L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction, Angewandte Chemie International Edition, 50 (2011) 7132-7135. |
|
[6] | W. An, C.H. Turner, Electronic structure calculations of gas adsorption on boron-doped carbon nanotubes sensitized with tungsten, Chemical Physics Letters, 482 (2009) 274-280. |
|
[7] | G.-X. Chen, J.-M. Zhang, D.-D. Wang, K.-W. Xu, First-principles study of palladium atom adsorption on the boron-or nitrogen-doped carbon nanotubes, Physica B: Condensed Matter, 404 (2009) 4173-4177. |
|
[8] | Y.-H. Li, T.-H. Hung, C.-W. Chen, A first-principles study of nitrogen-and boron-assisted platinum adsorption on carbon nanotubes, Carbon, 47 (2009) 850-855. |
|
[9] | M. Shuba, D. Yuko, P. Kuzhir, S. Maksimenko, G. Chigir, A. Pyatlitski, O. Sedelnikova, A. Okotrub, P. Lambin, Localized plasmon resonance in boron-doped multiwalled carbon nanotubes, Physical Review B, 97 (2018) 205427. |
|
[10] | M.-H. Yeh, Y.-A. Leu, W.-H. Chiang, Y.-S. Li, G.-L. Chen, T.-J. Li, L.-Y. Chang, L.-Y. Lin, J.-J. Lin, K.-C. Ho, Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction, Journal of Power Sources, 375 (2018) 29-36. |
|
[11] | T.-J. Li, M.-H. Yeh, W.-H. Chiang, Y.-S. Li, G.-L. Chen, Y.-A. Leu, T.-C. Tien, S.-C. Lo, L.-Y. Lin, J.-J. Lin, Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction, Sensors and Actuators B: Chemical, 248 (2017) 288-297. |
|
[12] | M. Jamshidi, M. Razmara, B. Nikfar, M. Amiri, First principles study of a heavily nitrogen-doped (10, 0) carbon nanotube, Physica E: Low-dimensional Systems and Nanostructures, (2018). |
|
[13] | T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures, Physical Review B, 67 (2003) 155108. |
|
[14] | T. Ozaki, H. Kino, Numerical atomic basis orbitals from H to Kr, Physical Review B, 69 (2004) 195113. |
|
[15] | J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (1997) 3865. |
|
[16] | A. Bahari, M. Bagheri, M. Amiri, First principles study of electronic and structural properties of single walled zigzag boron nitride nanotubes doped with the elements of group IV, Solid State Communications, 267 (2017) 1-5. |
|
[17] | Y.-T. Li, T.-C. Chen, Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory, Nanotechnology, 20 (2009) 375705. |
|
[18] | K. McGuire, N. Gothard, P. Gai, M. Dresselhaus, G. Sumanasekera, A. Rao, Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes, Carbon, 43 (2005) 219-227. |
|