[1] | Satiel A.R and Kahn C.R. (2001). Insulin signaling and the regulation of glucose and lipid metabolism. Nature; 404: 799-806. |
|
[2] | Zhao X., Bak S., Pedersen A.J.T., Jensen O.N. and Hajlund K. (2014). Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Journal of Proteome Research; 13 (5): 2359-2369. |
|
[3] | Wu C., Khan S.A., Peng L.J. and Lange A.J. (2006). Roles for fructose-2,6-bisphosphate in the control of fuel metabolism beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Adv. Enzyme Regul.; 46 (1): 72-88. |
|
[4] | Pilkis S.I and Granner D.K. (1992). Molecular Physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annual Rev. Physiol.; 54: 885-909. |
|
[5] | Weiner F.R., Smith P.J., Wertheimer S and Rubin C.S. (1991). Regulation of gene expression by insulin and tumor necrosis factor alpha in 3T3-L1cells. Modulation of the transcription of genes encoding acyl-CoA synthetase and stearoyl-CoA desaturase-1. The Journal of Biological Chemistry; 266: 23525-23528. |
|
[6] | Nakae J., Park B.C. and Accili D. (1999). Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through activation during adipogenesis in 3T3-L1 cells. J. Biol. Chem,; 273: 14063-14066. |
|
[7] | Cross D.A., Alessi D.R. Cohen P., Anajelkovich M and Hemmings B.A. (1995).Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase-B. Nature; 378: 785-789. |
|
[8] | Xu E., Schwah M. and Marette A. (2014).Role of protein tyrosine phosphatase in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev. Endocr. Metab. Disord.; 15 (1): 79-97. |
|
[9] | Le Roith D and Zick Y. (2001). Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care; 24: 588-97. |
|
[10] | Goldstein B.J., Bittner-Kowalczyk A., White M.F. and Harbeck M. (2000). Tyrosine dephosphorylation and deactivation if insulin receptor substrate-1 by protein tyrosine phosphatase 1B, Possible facilitation by the formation of a ternary complex with the grb2 adaptor protein. J. Biol. Chem.; 275: 4283-4289. |
|
[11] | Goldstein B.J. Ahmad F., Ding W., Li P.M and Zhang W.R. (1998). Regulation of the insulin signaling pathway by cellular protein tyrosine phosphatase. Mol. Cell Biochem.; 182: 91-99. |
|
[12] | White M.F. (1998). The IRS-1 signaling system: a network of docking proteins that mediate insulin and cytokines action. Recent Prog. Horm. Res.; 53: 119-138. |
|
[13] | Adeniyi P.O. and Sanusi R.A. (2014). Effect of ginger (Zingiber officinale) extracts on blood glucose in normal and steptozotocin-induced diabetic rats. International Journal of Clinical Nutrition; 2 (2): 32-35. |
|
[14] | Adeniyi P.O. and Sanusi R.A. (2014). Efficacy of ginger (Zingiber officinale Roscoe) extracts in lowering blood glucose in normal and high fat diet-induced diabetic rats. American Journal of Food and Nutrition; 2 (4): 55-58. |
|
[15] | Elshater A.A., Salman M.M.A and Moussa M.M.A. (2009) Effect of Ginger extract consumption on levels of blood glucose, lipid profile and kidney functions in alloxan-induced diabetic rats. Egypt Acad. J. Biol. Sci.; 2 (1): 153-162. |
|
[16] | Panchal S.K.,Pondyal H.M., Iyer A.M., Nazer R., Alam A., Diwan V., Kauter K., Sermia C., Campbell F., Ward L., Gobe G., Fenning A. and Brown L (2011). High carbohydrate, high fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. Journal of Cardiovascular Pharmacology; 57 (1): 51-64. |
|
[17] | Zheng T., Shu G., Yang Z., Mo S., Zhao Y and Mei Z. (2012). Anti diabetic effect of total saponins from Entada phaseoloides (L). Merr. In Type 2 diabetic rats. Journal of Ethno pharmacology; 139 (3): 814-821. |
|
[18] | Islam S and Choi H. (2008). Comparative effect s of dietary ginger and garlic investigated in Type 2 diabetes model of rats. Journal of Medicinal Foods: 11 (1): 152-159. |
|
[19] | Madkur H.R., Marsour S.W. and Ramadan G. (2011). Modulation effect of garlic, ginger, tuemeric and their mixture on hyperglycemia, dyslipidemia and oxidative stress in streptozotocin nicotinamide diabetic rats. British Journal of Nutrition; 106 (8): 1210-1217. |
|
[20] | Asad M, Munir T.A. and Afzal N. (2011). Acacia nilitica leave extract and Glyburide: Comparison of fasting blood glucose, serum insulin, β-Thromboglubulin levels and platelet aggregation in streptozotocin-induced diabetic rats. Journal of the Pakistan Medical Association: 61 (3): 247-251. |
|
[21] | Kim J.S.,Ju B.J., Choi C.W. and Kim S.C. (2006). Hypoglycemic and anti-hyperlipidemic effect of four Korean medicinal plants in alloxan-induced diabetic rats. Am. J. Biochem. Biotechnol.; 2: 154-160. |
|
[22] | Nammi S., Sreemantha S and Roufogalis B.D. (2009). Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic and Clinical Pharmacology and Toxicology; 104 (5): 366-373. |
|
[23] | Kadnur S.V. and Goyal R.K. (2005). Beneficial effects of Zingiber officinale Roscoe on fructose-induced hyperlipidemia and hyperinsulinemia in rats. Indian Journal of Experimental Biology; 43: 1161-1164. |
|