[1] | Aschbacher, P. R., Li, E., & Roth, E. J. “Is science me? High school students' identities, participation and aspirations in science, engineering, and medicine”. Journal of Research in Science Teaching, 2010, 47(5), 564-582. |
|
[2] | Bryan, R. R., Glynn, S. M., & Kittleson, J. M. “Motivation, achievement, and advanced placement intent of high school students learning science”. Science Education, 2011, 95(6), 1049-1065. |
|
[3] | SEI-DOST & UP NISMED, (2011). Science framework for Philippine basic education. Manila: SEI-DOST & UP. |
|
[4] | Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development (Vol. 1). Englewood Cliffs, NJ: Prentice-Hall. |
|
[5] | Lau, S. & Roeser, R. “Cognitive Abilities and Motivational Processes in High School Students’ Situational Engagement and Achievement in Science”. Educational Assessment, 2002, 8 (2), 139-162. |
|
[6] | Holstermann, N., Grube, D. & Bögeholz, S. “Hands-on Activities and Their Influence on Students’ Interest”. Res Sci Educ (2010) 40: 743. |
|
[7] | Hazari, Z., Sonnert, G, Sadler, P. & Shananan, M. “Connecting High School Physics Experiences, Outcome Expectations, Physics Identity, and Physics Career Choice: A Gender Study”. Journal of Research in Science Teaching, 2010, 47 (8), 978-1003. |
|
[8] | Rotgans, J.I., & Schmidt, H.G., “Situational interest and academic achievement in the active-learning classroom”, Learning and Instruction, 2010. |
|
[9] | Windschitl, M. Thompson, J., Braaten, M. & Stroupe, D. “Proposing a Core Set of Instructional Practices and Tools for Teachers of Science”, 2012, 96 (8), 878-903. |
|
[10] | Haak, D., HilleRislamber, J., Piter, E. & Freeman, S. “Increased Structure and Active Learning Reduce the Achievement Gap in Introductory Biology” Science, 2011, 332, 1213. |
|
[11] | Khan, M. Muhammad, N. Ahmed, M. Saeed, F. & Khan, S. “Impact of Activity –based teaching on Students’ Academic Achievement in Physics at Secondary Level”. Academic Research International, 2012, 3 (1). |
|
[12] | Stump, G., Hilpert, J., Husman, J, Chung, W. & Kim, W. “Collaborative Learning in Engineering Students: Gender and Achievement”, Journal of Engineering Education, 2011, 100 (3), 1-24. |
|
[13] | Watkins, J. & Mazur, E. “Retaining Students in Science, Technology, Engineering and Mathematics (STEM) Majors.” Journal of College Science Teaching, 2013, 42(5). |
|
[14] | Wang, M. , Eccles, J. & Kenny, S. “Not Lack of Ability but More Choice: Individual and Gender Differences in Choices of Careers in Science, Technology, Engineering, and Mathematics.” Psychological Science, 2013. |
|
[15] | Crumb, C. Moore, C. & Ramos-Wada, A. “Who wants to have a Career in Science or math? Exploring Adolescents’ Future Aspirations by Gender and Race/Ethnicity”. Science Education, 2010 Wiley Online Library (wileyonlinelibrary.com). |
|
[16] | Vedder-Weiss, D. & Fortus, D. “Adolescent’s Declining Motivation to Learn Science: inevitable or Not? “Journal of Research in Science Teaching, 2011, 48(2), 199-216. |
|
[17] | Swarat, S., Ortony, A., & Revelle, W. (2012). “Activity matters: Understanding student interest in school science”. Journal of Research in Science Teaching, 49(4), 515-537. |
|
[18] | Krapp, A. & Prenzel, M. “Research on Interest in Science: Theories, Methods and Findings”. International Journal of Science Education, Taylor & Francis (Routledge), 2011, 33(01), pp.27-50. |
|
[19] | Gerard, Ll. Varma, K., Corliss, S. & Linn, M. “Professional Development for Technology-Enhanced Inquiry Science.” Review of Educational Research. 2011, 81 (3), 408-448. |
|
[20] | Ashar, A., Ellington, R., Rice, E. Johnson, F. & Prime, G. “Supporting STEM Education in Secondary Science Context”. The Interdisciplinary Journal of Problem-based Learning, 2012, 6 (20), 85-125. |
|