Biomedical Science and Engineering
ISSN (Print): 2373-1257 ISSN (Online): 2373-1265 Website: https://www.sciepub.com/journal/bse Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Biomedical Science and Engineering. 2015, 3(3), 46-64
DOI: 10.12691/bse-3-3-1
Open AccessReview Article

Growth and Advancements in Neural Control of Limb

Bablu Lal Rajak1, Meena Gupta1 and Dinesh Bhatia1,

1Department of Biomedical Engineering, North Eastern Hill University, Shillong, Meghalaya, India

Pub. Date: December 03, 2015

Cite this paper:
Bablu Lal Rajak, Meena Gupta and Dinesh Bhatia. Growth and Advancements in Neural Control of Limb. Biomedical Science and Engineering. 2015; 3(3):46-64. doi: 10.12691/bse-3-3-1

Abstract

Centuries of study has unfolded our understanding regarding different bodily movement routinely performed. It has been observed that all these movements require intricate communication between the brain and associated muscles. Our sensory systems help in guiding this communication by providing information about the external environment and surroundings, thereby helping the motor system plan the different movements leading to controlled action by the muscles. Billions of neuron with quadrillion connections between them and muscles are responsible for coordinated movements that humans perform routinely. Though our knowledge and understanding about motor neuron diseases and neuro-degeneration disorders are limited, yet efforts have been made to overcome or improve the present state of these disorders either by drugs, artificial prosthetic devices, robotics, stimulation or stem cell therapy. These treatments are attempts to help relieve symptoms, improve functionality, provide support and effectively slow down the disease's progression. Furthermore, disabled individuals were aided with walking stick, wheelchair or stroller till recently; however, significant technological advancements in the past few decades have brought in more of man-machine interactive devices such as deployment of artificial prosthetics, improved brain-computer interactions and advanced neuroprosthetics for supporting activities of daily living in these patients. Additionally, new tools like computer simulations, medical imaging and computational models are being used to simulate simple movement tasks and compare the outcomes with real limb control and neural elements, thereby testing how brain signals are processed to achieve sophisticated motor control. Researchers are regularly improving existing devices for ease of use and efficiency, and new ones are being developed such that it can mimic the maneuverability of the natural limb.

Keywords:
neurons brain computer interface prosthetics neurodegenerative disorders stem therapy

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 9

References:

[1]  S. J. Bensmaia, L. E. Miller, “Restoring sensoriomotor function through intercotical interface: progress and looming challenge”, J nature reviews Neurosciences, vol. 15(5), pp. 313-315, 2014.
 
[2]  R. W. Mann, “Cybernetic Limb Prosthesis”, Annals of Biomedical Engineering, Vol. 9, pp 1-43, 1981.
 
[3]  C. Ethier, L. E. Miller, “Brain-controlled muscle stimulation for the restoration of motor function, Neurobiology of Disease” nbd, [ahead of print], Oct 14 ,2014
 
[4]  F. B. Horak, “Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing”, pp. 35-S2 ii7-ii11, 2006.
 
[5]  J. He ,C. Ma , R. Herman, “Engineering Neural Interfaces for Rehabilitation of Lower Limb Function in Spinal Cord Injured”, Proceedings of the IEEE, vol.96. no.7. pp. 1152-1166, 2008.
 
[6]  K.T. Manal, T. S. Buchanan, “Biomechanics of human movement”, Standard handbook of biomedical engineering and design, McGraw Hill, 2004.
 
[7]  J. M. Hollerbach, “Computers, brains and the control of movement”, Trends Neurosci, vol. 5. No 6. pp.189-92, 1982.
 
[8]  R. A. Schmidt, “Schema theory of discrete motor skill learning”, Psychol Rev, vol.82, no. 4, pp. 225-60, 1975.
 
[9]  A. G. Feldman, “Once more on the equilibrium-point hypothesis (lambda model) for motor control”, J Mot Behav vol. 18, no 1. pp.17-54, 1986.
 
[10]  E. Todorov, “Optimality principles in sensorimotor control”, Nature Neuroscience, vol.7, no.9. pp. 907–15, 2004. [PubMed: 15332089]
 
[11]  N. Dounskaia, “Control of Human Limb Movements: The Leading Joint Hypothesis and Its Practical Applications”, Exerc Sport Sci Rev. vol. 38, no. 4. pp.201-208, 2010.
 
[12]  J. L. Smith, and R. F. Zernicke, “Predictions for neural control based on limb dynamics”, Trends in Neurosciences, vol. 10, no. 3. pp. 123-128, 1987.
 
[13]  R. E. Kearney, I. W. Hunter, “System Identification of Human Joint Dynamics”, CRC Crit Rev Biomed Engin, vol. 18, pp.55-87, 1990.
 
[14]  R. Shadmehr, M. A. Arair, “A Mathematical Analysis of the Force-Stillness Characteristics of Muscles in Control of a Single Joint System”, Biol Cybern, vol. 66, pp. 463-477, 1992.
 
[15]  Y. P. Ivanenko, G. Cappellini, N. Dominici, R. E. Poppele, F. Lacquaniti, “Modular Control of Limb Movements during Human Locomotion”, J. Neurosci., vol. 27, no.41, pp. 11149-11161, 2007.
 
[16]  L. Seth, D. N. Louis, W. David, Greenfield's Neuropathology (8th ed.), London Hodder Arnold, pp. 947, 2008.
 
[17]  A. G. Reeves, R. S. Swenson, “Neuromuscular system disorders” in disorders of the nervous system 5th ed. Ch.3, sec.21. [Online] Available: http://www.dartmouth.edu/~dons/part_3/chapter_21.html.
 
[18]  K. M. Steinberg, D. C. Koboldt, “Researchers identified a new host gene variants that could make people vulnerable to sporadic motor neuron disease”, University of Sydney, March 16, 2015.
 
[19]  [Online] available: http://www.ninds.nih.gov/disorders/motor_neuron_diseases/detail_motor_neuron_diseases.htm.
 
[20]  W. N. Löscher, E. L. Feldman, “Motor Neuron Diseases”, Atlas of Neuromuscular Diseases, pp. 283-290, 2014.
 
[21]  W. Koroshetz, “Motor Neuron Diseases Fact Sheet: National Institute of Neurological Disorders and Stroke (NINDS)”. Motor neuron disease, Department of health and human services U.S., pp. 1-20, March 2012.
 
[22]  L.M Thompson, “Neurodegeneration: a question of balance”. Nature 452 (7188): pp.707-8.
 
[23]  D. C. Rubinszte, “The roles of intracellular protein-degradation pathways in neurodegeneration”. Nature, vol. 443 (7113), pp.780-6,Oct 2006.
 
[24]  S. DiMauro ,E. A. Schon, “Mitochondrial disorders in the nervous system”. Annual Review of Neuroscience, vol. 31, pp. 91-123, 2008.
 
[25]  D. E. Bredesen, R. V. Rao, P. Mehlen, “Cell death in the nervous system”. Nature, vol. 443 (7113), pp.796-802, 2006.
 
[26]  [Online] http://www.nlm.nih.gov/medlineplus/degenerativenervediseases.html.
 
[27]  Brain facts.org, “Degenerative disease”. Available: http://www.brainfacts.org/diseases-disorders/degenerative-disorders.
 
[28]  C.M Tanner, M.Brandabur, E.R.Dorsey, “Parkinson Disease: A Global View”, Rep. Parkinson, pp. 9-11, 2008.
 
[29]  [Online] available: http://www.alzheimers.net/resources/alzheimers-statistics.
 
[30]  Progress in mind, “Huntingtons disease”, Available on http://www.lundbeck.com/us/our-commitment/disease-information/huntingtons-disease-hd.
 
[31]  [Online] available: http://www.nichd.nih.gov/. Cerebral Palsy: Overview. September 5, 2014.
 
[32]  [Online] available: http://cerebralpalsy.org/about-cerebral-palsy/types-and-forms.
 
[33]  [Online] available: http://www.brainandspinalcord.org/cerebral-palsy/types/ataxic-cerebral-palsy.html.
 
[34]  A.I. Maas, N. Stocchetti, R.Bullock, “Moderate and severe traumatic brain injury in adults”. Lancet Neurology, vol. 7(8), pp. 728-41, August 2008.
 
[35]  M. Faul, L. Xu, M. M. Wald,V. G. Coronado, “Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002-2006. Atlanta (GA), Centers for Disease Control and Prevention”, National Center for Injury Prevention and Control, 2010.
 
[36]  C. Collins, J. Dean, “Acquired brain injury” in Turner, 2002. M. Foster, SE. Johnson. “Occupational Therapy and Physical Dysfunction: Principles, Skills and Practice”. Edinburgh: Churchill Livingstone. pp. 395–96.
 
[37]  P. A. Robertson, “Prediction of amputation after severe lower limb trauma.” Journal of Bone & Joint Surgery, British vol. 73, no.5. pp. 816-818., 1991.
 
[38]  U.S. National library of medicine. Medlineplus. “Amputation –trauma-causes”. [Online] Available: http://www.nlm.nih.gov/medlineplus/ency/article/000006.htm.
 
[39]  R. B.Islinger,T. R.Kulko , K. A. McHale, “A review of orthopedic injuries in the three recent US military conflicts”, Mil Med, vol. 165, pp. 463­5, 2000.
 
[40]  P. Meade, J. Mirocha, “Civilian landmine injuries”, J Trauma, in Sri Lanka, vol. 48, pp. 735-9, 2000.
 
[41]  L. J. Marks, J. W. Michael, “Artificial limbs”, British Medical Journal, vol. 323(7315), pp. 732-735, 2001.
 
[42]  L.Norgren , W. R.Hiatt, J, A.Dormandy , M. R.Nehler , et al “TASC II Working Group, Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II)”, J VascSurg, vol. 45, pp. S:S5, 2007.
 
[43]  K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, R. Brookmeyer, “Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050”, Archives of Physical Medicine and Rehabilitation, vol.89(3), pp.422-9, 2008.
 
[44]  A. Damir, “Why Diabetic Foot Ulcers do not heal?”, J International Medical Sciences Academy, vol. 24(4), pp. 205-206, 2011.
 
[45]  [Online] available: http://www.cdha.nshealth.ca/amputee-rehabilitation-musculoskeletal-program/patient-family-information/upper-limb-amputations.
 
[46]  Industrial safety and hygiene news, “Statistics on hand arm loss”, Feb. 4, 2014. [http://www.ishn.com/articles/97844-statistics-on-hand-and-arm-loss].
 
[47]  K. R.Sellegren. “An Early History of Lower Limb Amputations and Prostheses”, Theiowaorthopaedicjournal, vol. 2, pp.13-27, 1982.
 
[48]  R. S. Hamner, V. G. Narayan and K. M. Donaldson, “Designing for Scale: Development of the ReMotion Knee for Global Emerging Markets”, Annals of Biomedical Engineering, vol. 41(9), pp.1851-1859, 2013.
 
[49]  HCUP Nationwide Inpatient Sample (NIS). Healthcare Cost and Utilization Project (HCUP). Rockville, MD: Agency for Healthcare Research and Quality; 2009.
 
[50]  R. G.Miller, J. D.Mitchell, M. Lyon, D. H.Moore, “Amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)”, Amyotroph Lateral Scler Other Motor Neuron Disord,vol. 4(3), pp. 191-206 , 2003.
 
[51]  U. E. Williams, E. E. Philip-Ephraim, S. K. Oparah, “Multidisciplinary Interventions in Motor Neuron Disease”, Journal of Neurodegenerative Diseases, vol. 2014, pp. 1-10, 2014.
 
[52]  G Gowing, C. N.Svendsen, “Stem Cell Transplantation for Motor Neuron Disease: Current Approaches and Future Perspectives”. J of Neurotherapeutics.pp.591-606,2011.
 
[53]  G.Modi, V.Pillay, Y. E. Choonara, “Advances in the treatment of neurodegenerative disorders employing nanotechnology”, Annals of the New York Academy of Sciences , vol. 1184, pp. 154-172, 2010.
 
[54]  A. L. Southwell, P. H. Patterson, “Antibody therapy in neurodegenerative disease”, Rev Neuroscience, vol.21(4), pp.273-87, 2010.
 
[55]  M. doCarmo Costa, H. L. Paulson, “New hope for therapy in neurodegenerative diseases”, Cell Research, vol.23, pp.1159–1160, 2013.
 
[56]  J.S. Lunn, A. S. Sakowski, E.L Feldman, “Stem Cell Technology for Neurodegenerative Diseases”, Ann Neurol, vol. 70 (3),pp. 353-361,Sep 2011.
 
[57]  K. Gao , S. Chen , L. Wang ,W. Zhang ,Y. Kang ,et al., “Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3- to 5-year follow up”, Arthrosc J Arthrosc Amp RelatSurg, vol.26(4), pp.515-523,2010.
 
[58]  J. Cannan, H. Hu, “Human-Machine Interaction (HMI): A Survey”, School of Computer Science and Electronic Engineering, University of Essex, March 2013.
 
[59]  J. R. Wolpawa, N. Birbaumer, D. J. McFarlanda, G. Pfurtschellere, T. M. Vaughana, “Brain computer interfaces for communication and control”, Clinical Neurophysiology, vol. 113( 6), pp.767-791, 2002.
 
[60]  E. C. Leuthardt , G. Schalk, D. Moran, J. G. Ojemann, “The emerging world of motor neuroprosthetics: A neurosurgical perspective”, Neurosurgery , vol.59(1), pp. 1-14, 2006.
 
[61]  O .Lindvall , Z.Kokaia , A. M.Serrano, “Stem cell therapy for human neurodegenerative disorders-how to make it work”, Nature Medicine, vol 10, S42-S50, 2004.
 
[62]  M. L. Kringelbach, N. Jenkinson , S. L. F.Owen , T. Z. Aziz, “Translational principles of deep brain stimulation”, Nature Reviews Neuroscience, vol. 8(8), pp. 623-635, 2007.
 
[63]  G. Pizzolato, T.Mandat, “Deep Brain Stimulation for Movement Disorders” Frontiers”, in Integrative Neuroscience.; 6: 2. PMC3265746. 2012.
 
[64]  J. P. Lefaucheur, N. André-Obadia, A.Antal, S. S. Ayache , et al., “Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)”, Clinical Neurophysiology. 2014.
 
[65]  R. Cantello, “Applications of transcranial magnetic stimulation in movement disorders”, Journal of Clinical Neurophysiology, pp. 272-93, 2012. [PMID: 12436085]
 
[66]  A. G.Nerlich, A.Zink, “Ancient Egyptian prosthesis of the big toe”, Lancer, vol. 356(9248), pp.2176-9, 2000.
 
[67]  A. J. Thurston, “Pare and prosthetics: the early history of artificial limbs”, ANZ J Surg, vol. 77 (12), pp.1114-9, 2007.
 
[68]  P.I.Branemark, B. O.Hannson, R.Adell, et al., “Osseointegrated implants in the treatment of the edentulous jaw”, Stockholm: Almqvist and wiksel, pp. 132,1977.
 
[69]  A. F.Mak,M. Zhang, D. A. Boone, “State-of-the-art research in lower limb biomechanics-socket interface: a review”, J Rehabil Res Dev, vol. 38(2), pp.161-74, 2001.
 
[70]  W. J. Board, G. M.Street,C.Caspers, “A comparison of transtibial amputee suction and vacuum socket conditions”. ProsthetOrthotInt, vol.25, pp.202-9,2001.
 
[71]  H. Wetz, D. Gisbertz, “History of artificial limbs for the leg”, Orthopade, vol. 29(12), pp. 1018-32,2009.
 
[72]  M. Heim, M. Wershavski, S. T. Zwas, et al., “Silicone suspension of external prostheses: a new era in artificial limb usage”, J Bone joint Surg, vol. 79, pp. 638-40, 1997.
 
[73]  W. A.Sonck, J. L. Cockrell, G. H.Koepke, “Effect of liner materials on interface pressures in below knee prostheses”, Arch Phys Med Rehabil, vol. 51, pp. 666-9, 1970.
 
[74]  M. S.Scholz, J. P.Blanchfield, L. D. Bloom, B. H.Coburn, et.al., “The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review”, Compos SciTechnol, vol.71(16), 1791-1803, 2011.
 
[75]  J. F. Lehmann,R. Price, B. S.Boswell, et al., “Comprehensive analysis of energy storing prosthetics feet: Flex Foot and Seattle foot versus standard SACH foot”, Arch Phys Med Rehabil, vol. 74, pp. 1225-31, 1993.
 
[76]  B. J.Hafner, L. L. Willingham, N. C.Buell, et al., “Evaluation of function, performance and preference as transfemoralamputees transition from mechanical to microprocessor control of the prosthetic knee”, Arch Phys Med Rehabil, vol. 88(2), pp. 207-17, 2007.
 
[77]  J. G. Buckley, W. D. Spence, S. Solomonidis, “Energy cost of walking: comparison of “intelligent prosthesis” with conventional mechanism”. ArchPhys Med Rehabil, vol.78, pp. 330­3, 1997.
 
[78]  L. D. Fisher, M.Lord, “Bouncy knee in a semi­automatic knee lock prosthesis”, Prosthet Orthot. Int, vol.10, pp. 35­9, 1986.
 
[79]  K. Schneider, T. Hart,R. F. Zemicke, et al., “Dynamics of below-knee child child amputee gait: SACH foot versus Flex foot”, J Biomech, vol.26, pp. 1191-204, 1993.
 
[80]  L. A. Miller, D. S. Childress. “Vertical compliance in prosthetic feet: a preliminary investigation [abstract]”, Proceedings of the 8th world congress of the International Society for Prosthetics and Orthotics. Melbourne, Australia: International Society for Prosthetics and Orthotics, pp. 1-8, 1995.
 
[81]  S. K. Au, H. Herr, J. Weber, et al., “Powered ankle-foot prosthesis for the improvement of amputee ambulation”, Proceedings of the 29th Annual International Conference of the IEEE EMBS Cite Internationale, Lyon, France, August 23-26, 2007.
 
[82]  J. K. Hitt, R. Bellman, M. Holgate, et al., “The SPARKy Project: design and analysis of a robotic transtibial prostheses with regenerative kinetics”, Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007. Nevada, Sept 4-7, 2007.
 
[83]  K. Bhaskaranand, A. K. Bhat, K. N. Acharya, “Prosthetic rehabilitation in traumatic upper limb amputees (an Indian perspective)”, Arch Orthop Trauma Surg, vol. 123(7), pp, 363-6, 2003.
 
[84]  J. Z. Laferrier, R. Gailey, “Advances in lower limb prosthetic technology”, Phys Med RehabilClin N Am, vol.21, pp.87-110, 2010.
 
[85]  [Online] available: http://www.disabled-world.com/assistivedevices/prostheses/.
 
[86]  L. J.Hargrove,H. Huang,A. E. Schultz, B. A. Lock, R.Lipschutz, T. A.Kuiken, “Toward the Development of a Neural Interface for Lower Limb Prosthesis Control”, 31st Annual International Conference of the IEEE EMBS, 2009
 
[87]  B. Aeyels, L. Peeraer, J. Vander Sloten, P. G. Van deret al., “Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results”, J Biomed Eng, vol. 14(3), pp. 199-202, 1992.
 
[88]  D. Popovic, M.N. Oguztoreli, R.B. Stein, “Optimal control for an above-knee prosthesis with two degrees of freedom”, Journal of Biomechanics, vol. 28(1), pp 89-98, 1995.
 
[89]  M. Cestari, D. Sanz-Merodio, J. C. Arevalo, E. Garcia, “An Adjustable Compliant Joint for Lower-Limb Exoskeletons”, IEEE Transactions On Mechatronics, vol.20, no.2, pp.889-898, 2015.
 
[90]  A.O Kapti, M.S. Yucenur, “Design and control of an active artifical knee joint. Mechanism and Machine Theory”, Vol, 41: pp, 1477-1485. 2006.
 
[91]  M. S. Zahedi, M. S. Spence, W. D. Solomonidis, J. P. Paul, “Alignment of lower-limb prostheses”, Journal of Rehabilitation Research and Development, vol.23, no.2. pp.2-19, 1986.
 
[92]  M. S. H. Bhuyian, I. A. Choudhury, M. Dahari. “Development of a control system for artificially rehabilitated limbs: a review”, Biological Cybernetics, pp. 1-22, 2014.
 
[93]  A. E. Schultz, T. A. Kuiken, “Neural Interfaces for Control of Upper Limb Prostheses: The State of the Art and Future Possibilities”, American Academy of Physical Medicine and Rehabilitation, vol.3, pp.55-67, 2011.
 
[94]  T. R. Dillingham, L. E. Pezzin, E. J. MacKenzie. “Limb amputation and limb deficiency: epidemiology and recent trends in the United States”. South Med J, vol. 95(8), pp.875-83, Aug 2002.
 
[95]  Y. Geng, P. Yang, X. Xu, L. Chen, “Design and simulation of active transfemoral prosthesis.” Control and Decision Conference (CCDC), 2012 24th Chinese. IEEE, 2012. H. H.Kessler, E.A. Kiessling, “Automatic Arm Prosthesis”, Am. J. Nursing, pp. 65-6, 1965.
 
[96]  D. S. Childress, “Historical Aspects of Powered Limb Prostheses”, Clinical J Prosthetics & Orthotics, vol 9(1), pp. 2-13, 1985.
 
[97]  S. R. Spiegel, “Adult myoelectric upper-limb prosthetic training”, In: Atkins DA, Meier RHIII, eds. Comprehensive Management of the Upper-Limb Amputee. New York, NY: Springer-Verlag, pp. 60-71, 1989.
 
[98]  A. L. Muilenberg,M. A. Leblanc, “Body-powered upper-limb components”. In: Atkins DJ, Meier RHI, eds. Comprehensive Management of the Upper-Limb Amputee. New York. NY: Springer-Verlag, pp. 28-38,1989.
 
[99]  C. K. Battye, A. Nightingale, J. Whillis, “The Use of Myo-Electric Currents in the Operation of Prostheses”, J. Bone & Joint Surg., vol. 37B, pp. 506-510, 1955.
 
[100]  R. N. Scott , P. A.Parker, “ Myoelectric prostheses: state of the art”, Journal of Medical Engineering & Technology, vol. 12, No. 4. pp. 143-151, 1988.
 
[101]  C. Choi, J. Kim, “A Real-time EMG-based Assistive Computer Interface for the Upper Limb Disabled,” Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on , vol., no., pp.459,462, 13-15 June 2007.
 
[102]  X. Navarro, T. B. Krueger, N. Lago, S. Micera, T.Stieglitz, P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems”, J PeripherNervSyst, vol. 10, pp. 229-258, 2005.
 
[103]  J. C. Sanchez, “Co-Evolution of Human and Machine: Neuroprosthetics in the 21st Century”. History of Technical Societies, IEEE Conference Aug 2009.
 
[104]  N. Hogan. “Close-Contact, Human-Interactive Technologies”, Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, March 2005.
 
[105]  N. Hogan. “Close-Contact, Human-Interactive Technologies”, Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, March 2005.
 
[106]  E. Bionics. (2015), Available http://intl.eksobionics.com/ekso.
 
[107]  R. Bionics. (2015), Available: http://www.rexbionics.com/.
 
[108]  M. Cestari, D. S. Merodio, J. C. Arevalo, E. Garcia, “Adjustable Compliant Joint for Lower-Limb Exoskeletons”, IEEE Transactions on Mechatronics, vol.20, No.2, pp. 889-898, 2015.
 
[109]  S. Kwon, J. Kim.”Real-Time Upper Limb Motion Prediction from noninvasive biosignals for physical Human-Machine Interactions”, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2009.
 
[110]  L. Cen , H. Han and J. Kim, “Optical muscle activation sensors for estimating upper limb force level”, Proc. Instrum. Meas. Technol. Conf. pp.1 -4, 2011.
 
[111]  R. Tomovic, D. Popovic, R. B. Stein, “Nonanalytical methods for motor control”, World Scientific, Singapore, 1995.
 
[112]  J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D, J. McFarland, et al., “Brain-Computer Interface Technology: A Review of the First International Meeting”. IEEE Transactions on rehabilitation engineering, vol. 8, no. 2. pp. 164-173, 2000.
 
[113]  N. Birbaumer, A. R. Murguialday, L. Cohen, “Brain-computer interface in paralysis”, Current Opinion in Neurology, vol. 21. pp. 634-638, 2008.
 
[114]  D. J. McFarland, L.M. McCane, S.V. David, J. R. Wolpaw, “Spatiallter Selection for EEG-based communication”, Electroencephalography and Clinical Neurophysiology, vol. 103. pp. 386-394, 1997.
 
[115]  G. Pfurtscheller, C. Neuperamd, A. Schlogl, K. Lugger, “Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters”, IEEE Transactions on Rehabilitation Engineering, vol. 6(3), pp.316-325, 1998.
 
[116]  H. Ramoser, J. Muller-Gerking, G. Pfurtscheller, “Optimal spatial altering of single trial EEG during imagined hand movement”, IEEE Transactions on Rehabilitation Engineering, vol. 8(4), pp. 441-446, 2000.
 
[117]  J. R. Wolpaw, D.J. McFarland, “Multichannel EEG-based brain-computer communication”, Electroencephalography and Clinical Neurophysiology, vol. 90, pp. 444-449, 1994.
 
[118]  L. R. Hochberg, M. D. Serruya, G. M. Friehs, et al., “Neuronal ensemble control of prosthetic devices by a human with tetraplegia”, Nature, vol. 442(7099), pp. 164-171, 2006.
 
[119]  N. F. Ramsey, M. P. Van de Heuvel, K. H. Kho, F. S. Leijten, “Towards human BCI applications based on cognitive brain systems: an investigation of neural signals recorded from the dorsolateral prefrontal cortex”. IEEE Trans Neural SystRehabil Eng. vol. 14(2), pp. 214-217, 2006.
 
[120]  J. J. Shih, D. J. Krusienski, J. R Wolpaw, “Brain-Computer Interfaces in Medicine”, Mayo ClinProc, vol. 87(3), pp. 268-279, 2012.
 
[121]  R. Roy, A. Konar, D. N. Tiberawala, “EEG driven Artificial Limb Control using State Feedback PI Controller”, IEEE Students’ Conference on Electrical, Electronics and Computer Science 2012.
 
[122]  A. R Murguialday, V. Aggarwal, A. Chatterjee, C. Yoonju, “Brain-Computer Interface for a Prosthetic Hand Using Local Machine Control and Haptic Feedback”, IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. , vol. no., pp. 609-13, June 2007.
 
[123]  M. Velliste, S. Perel, M. C. Spalding, et al., “Cortical control of a prosthetic arm for self-feeding”, Nature, vol. 453, pp. 1098-1101, 2008.
 
[124]  A. Riehle, E. Vaadia, “Motor cortex in voluntary movements: A distributed system for distributed functions”, Boca Raton: CRC Press; 2005.
 
[125]  M. A. Lebedev, M. A. Nicolelis, “Brain machine interfaces: past, present and future”, Trends Neurosci, vol. 29, pp. 536–546, 2006.
 
[126]  E. A. Felton, J. A. Wilson, J. C. Williams, P. C. Garell, “Electrocorticographically controlled brain–computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants”, J Neurosurg, vol. 106, pp.495-500, 2007.
 
[127]  A. Caria, R.Veit, R.Sitaram et al., “Regulation of anterior insular cortex activity using real-time fMRI”, NeuroImage, vol. 35, pp. 1238-1246, 2007.
 
[128]  R. Sitaram,H. Zhang, C. Guan, et al., “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain computer interface”, NeuroImage, vol.34, pp.1416-1427, 2007.
 
[129]  H. S. Mayberg,A. M. Lozano, “Deep brain stimulation for treatment –resistant depression”, Neuron.3, vol. 45(5), pp.651-660, 2005.
 
[130]  G. Loeb, “Cochlear prosthetics,” Annu. Rev. Neurosci., vol. 13, pp. 357-371, 1990.
 
[131]  J. Rauschecker, R. Shannon, “Sending sound to the brain”, Science, vol. 295, pp. 1025-1029, 2002.
 
[132]  L.Borreli, FIFA World Cup 2014: 'Iron Man' Paraplegic To Kick First World Cup Ball With Brain Activity-Controlled Exoskeleton, June 2014. [online] available: http://www.medicaldaily.com/fifa-world-cup-2014-iron-man-paraplegic-kick-first-world-cup-ball-brain-activity-controlled-287770.
 
[133]  Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current opinion in neurology, 16(6), 705-710.
 
[134]  Paweł Maciejasz1,2,3, Jörg Eschweiler4*, Kurt Gerlach-Hahn, et al. A survey on robotic devices for upper limb rehabilitation, Journal of NeuroEngineering and Rehabilitation 2014, 11:3, 1-29.
 
[135]  T. Anwar, A.A. Jumaily, Patient Cooperative Adaptive Controller for lower limb Robotic Rehabilitation Device, 2014 IEEE International Advance Computing Conference (IACC), 1469-1474, 2014.
 
[136]  H.I. Krebs, N. Hogan, M. L. Aisen, B.T. Volpe, “Robot-aided neurorehabilitation”, Rehabilitation Engineering, IEEE Transactions on, vol. 6, no. 1, pp.75-87, 1998.
 
[137]  G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, and A. Goswami, “A 1-DOF assistive exoskeleton with virtual negative damping: effects on the kinematic response of the lower limbs,” in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp. 1938-1944, 2007.
 
[138]  G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, and A. Goswami, “Active-impedance control of a lower-limb assistive exoskeleton,” pp. 188-195, 2007.
 
[139]  C. Krishnan, R. Ranganathan, S. S. Kantak, Y. Y. Dhaher, and W. Z. Rymer, “Active robotic training improves locomotor function in a stroke survivor,” J. NeuroEng. Rehabil., vol. 9, no. 57, 2012.
 
[140]  P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. van der Loos, “Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke,” Arch. Phys. Med. Rehab., vol. 83, pp. 952-959, 2002.
 
[141]  M.L. Aisen, H.I. Krebs, N. Hogan, F. McDowell, B.T. Volpe, “The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke”, Arch Neurol, vol. 54, no 4, pp. 443-46, 1997.
 
[142]  S.E. Fasoli, H.I. Krebs, J. Stein, W. R. Frontera , N. Hogan, “Effects of robotic therapy on motor impairment and recovery in chronic stroke”, Arch Phys Med Rehabil, vol. 84, no. 4, pp. 477-82, 2003.
 
[143]  L. R. MacClellan, D.D. Bradham, J. Whitall, B. Volpe, et al, “Robotic upper-limb neurorehabilitation in chronic stroke patients”, Journal of rehabilitation research and development, vol. 42, no. 6, pp.717, 2005.
 
[144]  N. Hogan, H.I. Krebs, A. Sharon, J. Charnnarong, inventors; Massachusetts Institute of Technology, assignee. Interactive robotic therapist. United States patent US 5466213. Nov 1995.
 
[145]  F. Tenore, R. Etienne-Cummings, “Biomorphic circuits and systems: Control of robotic and prosthetic limbs,” in Biomedical Circuits and Systems Conference, 2008. BioCAS 2008. IEEE , vol., no., pp.241-244, 20-22 Nov. 2008.