[1] | Giulini, D. & Kiefer, C. (2007). The Canonical Ap- proach to Quantum Gravity: General Ideas and Geometrodynamics, In: Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, I.-O. Stamatescu and E. Seiler, (Eds.), Lect. Notes Phys. 721, pp. 131-150, Springer, New York. |
|
[2] | Kiefer, C. (2009). Quantum geometrodynamics: whence, whither?. Gen. Rel. Grav. 41, (2009) 877-901. |
|
[3] | ’t Hooft, G. & Veltman, M.J.G. (1973). Dia- grammar, CERN, Geneva. |
|
[4] | Veltman, M.J.G. (1976). Quantum Theory of Gravitation, In: Methods in Field Theory. Proc. Les Houches, Session XXVIII, R. Balian and J. Zinn-Justin, (Eds.), pp. 265-328, North Holland, Ams- terdam. |
|
[5] | Bern, Z.; Carrasco, J.J.M. & Johansson, H. (2010). Per- turbative Quantum Gravity as a Double Copy of Gauge Theory. Phys. Rev. Lett. 105, (2010) 061602. |
|
[6] | Wadia, S.R. (2008). String Theory: A Framework for Quan- tum Gravity and Various Applications. E-print: arXiv:0809.1036 [gr- qc]. |
|
[7] | Blau, M. & Theisen, S. (2009). String theory as a theory of quantum gravity: a status report. Gen. Rel. Grav. 41, (2009) 743-755. |
|
[8] | Giddings, S.B. (2011). Is string theory a theory of quantum gravity?. E-print: arXiv:1105.6359 [hep-th]. |
|
[9] | Ashtekar, A. (2007). An Introduction to Loop Quantum Gravity Through Cosmology. Nuovo Cim. B 122, (2007) 135-155. |
|
[10] | Perez, A. (2009). Loop quantum gravity: An introduction. AIP Conf. Proc. 1132, (2009) 386-428. |
|
[11] | Domagala, M; Giesel, K.; Kaminski, W. & Lewandowski, J. (2010). Gravity quantized: Loop Quantum Gravity with a Scalar Field. Phys. Rev. D 82, (2010) 104038. |
|
[12] | Rovelli, C. (2011). Loop quantum gravity: the first twenty five years. Class. Quant. Grav. 28, (2011) 153002. —– (2011). A new look at loop quantum gravity. Class. Quant. Grav. 28, (2011) 114005. |
|
[13] | Oriti, D. (Ed.) (2009). Approaches To Quantum Gravity. To- ward A New Understanding Of Space, Time And Matter, Cambridge University Press, Cambridge. |
|
[14] | Wheeler, J.A. (1957). On the Nature of Quantum Ge- ometrodynamics. Ann. Phys. 2, (1957) 604-614. —– (1962). Geometrodynamics, Academic Press, New York. —– (1964). Geometrodynamics and the Issue of the Final State, In: Relativity, Groups, and Topology. Lectures Delivered at Les Houches During the 1963 Session of the Summer School of Theoretical Physics, University of Grenoble, C. DeWitt and B. DeWitt, (Eds.), pp. 317-501, Gordon and Breach, New York. —– (1968). Superspace and the Nature of Quantum Geometrodynam- ics, In: Battelle Rencontres. 1967 Lectures in Mathematics and Physics, C.M. DeWitt and J.A. Wheeler, (Eds.), pp. 242-308, W.A. Benjamin, New York. —– (1968). Einsteins Vision, Springer-Verlag, New York. —– (1970). Superspace, In: Analytic Methods in Mathematical Physics, R.P. Gilbert and R. Newton, (Eds.), pp. 335-378, Gordon and Breach, New York. |
|
[15] | DeWitt, B.S. (1967). Quantum Theory of Gravity I. The Canonical Theory. Phys. Rev. 160, (1967) 1113-1148. —– (1967). Quantum Theory of Gravity II. The Manifestly Covariant Theory. Phys. Rev. 160, (1967) 1195-1239. —– (1967). Quantum Theory of Gravity III. Applications of the Co- variant Theory. Phys. Rev. 160, (1967) 1239-1256. |
|
[16] | Dirac, P.A.M. (1964). Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University. —– (1959). Fixation of Coordinates in the Hamiltonian Theory of Grav- itation, Phys. Rev. 114, (1959) 924-930. —– (1959). Energy of the Gravitational Field. Phys. Rev. Lett. 2, (1959) 368-371.– (1958). Generalized Hamiltonian Dynamics. Proc. R. Soc. A 246, (1958) 326-332. —– (1958). The Theory of Gravitation in Hamiltonian Form. Proc. R. Soc. A 246, (1958) 333-343. —– (1950). Generalized Hamiltonian Dynamics. Can. J. Math. 2, (1950) 129-148. —– (1949). Forms of Relativistic Dynamics. Rev. Mod. Phys 21, (1949) 392-399. |
|
[17] | Arnowitt, R.; Deser, S. & Misner, C.W. (1961). The Dynamics of General Relativity, In: Gravitation: an introduction to current research, L. Witten, (Ed.), pp. 227-265, John Wiley & Sons, New York. |
|
[18] | Hartle, J.B. & Hawking, S.W. (1983). Wave func- tion of the Universe. Phys. Rev. D 28, (1983) 2960-2975. |
|
[19] | Halliwell, J.J. & Hawking, S.W. (1985). Origin of structure of the Universe. Phys. Rev. D 31, (1985) 1777-1791. |
|
[20] | Coleman, S.; Hartle, J.B.; Piran, T. & Weinberg, S. (Eds.) (1991), Quantum Cosmology and Baby Universes, World Scien- tific, Singapore. |
|
[21] | Hartle, J.B.; Hawking, S.W. & Hertog T. (2008). Clas- sical universes of the no-boundary quantum state. Phys. Rev. D 77, (2008) 123537. —– (2008). No-Boundary Measure of the Universe. Phys. Rev. Lett. 100, (2008) 201301. |
|
[22] | Glinka, L.A. (2007). Quantum Information from Graviton-Matter Gas. SIGMA 3, (2007) 087, 13 pages. —– (2007). Preliminaries in Many-Particle Quantum Gravity. Einstein– Friedmann Spacetime. E-print: arXiv:0711.1380 [gr-qc]. —– (2008). Multiparticle Quantum Cosmology, In: Frontiers of Fun- damental and Computational Physics. 9th International Symposium, Udine and Trieste, Italy 7-9 January 2008, B.G. Sidharth, F. Honsell, O. Mansutti, K. Sreenivasan, and A. De Angelis (Eds.), AIP Conf. Proc. 1018, (2008) 94-99, American Institute of Physics, New York. —– (2008). Quantum gravity as the way from spacetime to space quan- tum states thermodynamics. New Adv. Phys. 2, (2008) 1-62. —– (2008). 1D Global Bosonization of Quantum Gravity. E-print: arXiv:0804.3516 [gr-qc]. —– (2008). Many-Particle Quantum Cosmology, In: Supersymme- tries and Quantum Symmetries (SQS’07): Proceedings of International Workshop, held in Dubna, Russia, July 30 - August 4, 2007, E. Ivanov and S. Fedoruk (Eds.), pp. 406-411, J |
|
[23] | Weinberg, S. (1972). Gravitation and Cosmology. Princi- ples and Applications of the General Theory of Relativity, John Wiley & Sons, New York. |
|
[24] | Misner, C.W.; Thorne, K.S. & Wheeler, J.A. (1973). Gravitation, W.H. Freeman, San Francisco. |
|
[25] | Landau, L.D. & Lifshitz, E.M. (1994). Course of Theoretical Physics, Vol 2. The Classical Theory of Fields, 4th English ed., Butterworth Heinemann, Amsterdam. |
|
[26] | Carroll, S. (2004). Space-time and Geometry. An Introduction to General Relativity, Addison-Wesley, San Francisco. |
|
[27] | Poisson, E. (2004). A Relativist’s Toolkit. The Mathematics of Black-Hole Mechanics, Cambridge University Press, Cambridge. |
|
[28] | DeWitt, B. (2003). The Global Approach to Quantum Field Theory, Vols. 1-2, Int. Ser. Monogr. Phys. 114, Clarendon Press, Ox- ford. |
|
[29] | Masahiro, S. (1987). Nash Manifolds, Lect. Notes Math. 1269, Springer, New York. |
|
[30] | Giulini, D. (2009). The Superspace of geometrodynamics. Gen. Rel. Grav. 41, (2009) 785-815. |
|
[31] | ’t Hooft, G. & Veltman, M. (1972). Regulariza- tion and renormalization of gauge fields. Nuclear Physics B 44, (1972) 189-213. |
|
[32] | Glinka, L.A. (2012). Æthereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity, Cambridge International Science Publishing, Great Abington. |
|