Article citationsMore >>

Glinka, L.A. (2007). Quantum Information from Graviton-Matter Gas. SIGMA 3, (2007) 087, 13 pages. —– (2007). Preliminaries in Many-Particle Quantum Gravity. Einstein– Friedmann Spacetime. E-print: arXiv:0711.1380 [gr-qc]. —– (2008). Multiparticle Quantum Cosmology, In: Frontiers of Fun- damental and Computational Physics. 9th International Symposium, Udine and Trieste, Italy 7-9 January 2008, B.G. Sidharth, F. Honsell, O. Mansutti, K. Sreenivasan, and A. De Angelis (Eds.), AIP Conf. Proc. 1018, (2008) 94-99, American Institute of Physics, New York. —– (2008). Quantum gravity as the way from spacetime to space quan- tum states thermodynamics. New Adv. Phys. 2, (2008) 1-62. —– (2008). 1D Global Bosonization of Quantum Gravity. E-print: arXiv:0804.3516 [gr-qc]. —– (2008). Many-Particle Quantum Cosmology, In: Supersymme- tries and Quantum Symmetries (SQS’07): Proceedings of International Workshop, held in Dubna, Russia, July 30 - August 4, 2007, E. Ivanov and S. Fedoruk (Eds.), pp. 406-411, J

has been cited by the following article:


Objective Quantum Gravity, Its Possible Relation to Gauge Theories and Strings

1B.M. Birla Science Centre, Hyderabad, India

Applied Mathematics and Physics. 2014, Vol. 2 No. 3, 82-93
DOI: 10.12691/amp-2-3-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Lukasz Andrzej Glinka. Objective Quantum Gravity, Its Possible Relation to Gauge Theories and Strings. Applied Mathematics and Physics. 2014; 2(3):82-93. doi: 10.12691/amp-2-3-4.

Correspondence to: Lukasz  Andrzej Glinka, B.M. Birla Science Centre, Hyderabad, India. Email:;


In this paper the model of quantum gravity for the higher dimensional Lorentzian space-times, in the sense of the analogy with the Arnowitt–Deser–Misner decomposition well-known from General Relativity, is presented. The model is constructed through making use of the quantum geometrodynamics supplemented by the global onedimensionality conjecture, and considers the objective wave functionals. The framework of quantum field theory is applied in order to establish the phenomenological efficiency in accordance with high energy physics. The empirical deductions on the spatial dimensionality are presented as the relationship between the model and gauge theories, especially string theory.