American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: https://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2018, 6(1), 25-32
DOI: 10.12691/ajps-6-1-5
Open AccessArticle

Molecular Docking and In-Silico ADME Prediction of Substituted (E)-4-Styryl-7,8-dihydroquinazolin-5(6H)-ones and 5-((E)-Styryl)pyrimidine[4,5-d]pyrimidine-2,4(1H,3H)-diones as Potential SERT Inhibitors and Antidepressants

Oyesakin Y.M.1, George D.E.2, Fadare R.Y.2, Idris A.Y.1 and Fadare O.A.2,

1Department of Pharmaceutical & Medicinal Chemistry, Ahmadu Bello University, Zaria, Nigeria

2Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria

Pub. Date: November 29, 2018

Cite this paper:
Oyesakin Y.M., George D.E., Fadare R.Y., Idris A.Y. and Fadare O.A.. Molecular Docking and In-Silico ADME Prediction of Substituted (E)-4-Styryl-7,8-dihydroquinazolin-5(6H)-ones and 5-((E)-Styryl)pyrimidine[4,5-d]pyrimidine-2,4(1H,3H)-diones as Potential SERT Inhibitors and Antidepressants. American Journal of Pharmacological Sciences. 2018; 6(1):25-32. doi: 10.12691/ajps-6-1-5

Abstract

A set of 66 compounds from three classes having either of the two nuclei, (E)-4-styryl-7,8-dihydroquinazolin-5(6H)-one (1-22a and 1-22b) and 5-((E)-styryl)pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione (1-22c) were docked with Serotonin reuptake transporter (SERT) using escitalopram as the reference compound for comparison. Five of the compounds (18b, 19a, 15c, 19c and 6a) had binding energy lower than/equal to that of escitalopram (-8.8 kcal/mol) and were eliminated from the study. The remaining 61 compounds were assessed for druglikeness using Lipinski’s rule of five which led to the elimination of one more compound (19b). From among the remaining 60 compounds, 31 having binding energy equal to/greater than -10 kcal/mol were submitted for ADME properties prediction on an online program (preADMET) and the analysis of the results, taking into consideration the compounds blood brain barrier penetration and predicted P-glycoprotein inhibition as the major criteria for elimination, 11 compounds were selected for synthesis and further study as antidepressant agents. None of the 5-((E)-styryl)pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione made it to the final eleven compounds due to high polarity that limits their BBB penetration. From among the 11 selected for synthesis are 3 compounds also that have very good hepatic metabolism (CYP450 enzymes interactions) pharmacokinetic profiles, predicted. The compounds selected for synthesis preferentially bind to the allosteric site of the SERT.

Keywords:
serotonin citalopram quinazolinone blood brain barrier druglikeness P-glycoprotein

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  World Health Organization (WHO). Depression Fact sheet N°369. Published October 2012. Retrieved from: http://www.who.int/mediacentre/factsheets/fs369/en/. Accessed June 2015.
 
[2]  World Health Organization (WHO). Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. 2011. Retrieved from: http://apps.who.int/gb/ebwha/pdf_files/EB130/B130_9-en.pdf. Accessed June 2015
 
[3]  World Health Organization (WHO) (2012). Depression A global public Health concern. http://www.who.int/mental_health/management/depression/who_paper_depression_wfmh_2012.pdf accessed on March 3, 2018.
 
[4]  U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Mental Health. (2015). Depression (NIH Publication No. 15-3561). Bethesda, MD: U.S. Government Printing Office
 
[5]  Coppen, A. (1967). The biochemistry of affective disorders. The British Journal of Psychiatry, 113(504), 1237-1264.
 
[6]  Delgado, P. L. (2000). Depression: the case for a monoamine deficiency. The Journal of clinical psychiatry.
 
[7]  Hirschfeld, R. M. (2000). History and evolution of the monoamine hypothesis of depression. The Journal of clinical psychiatry, 61, 4-6.
 
[8]  Salomon, R. M., Miller, H. L., Krystal, J. H., Heninger, G. R., & Charney, D. S. (1997). Lack of behavioral effects of monoamine depletion in healthy subjects. Biological Psychiatry, 41(1), 58-64.
 
[9]  Vandenberg, R. J., Shaddick, K., & Ju, P. (2007). Molecular basis for substrate discrimination by glycine transporters. Journal of Biological Chemistry.
 
[10]  Murphy, D. L., Lerner, A., Rudnick, G., & Lesch, K. P. (2004). Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Molecular interventions, 4(2), 109.
 
[11]  Sutcliffe, J. S., Delahanty, R. J., Prasad, H. C., McCauley, J. L., Han, Q., Jiang, L., ... & Blakely, R. D. (2005). Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. The American Journal of Human Genetics, 77(2), 265-279.
 
[12]  Veenstra-VanderWeele, J., Muller, C. L., Iwamoto, H., Sauer, J. E., Owens, W. A., Shah, C. R., ... & Ye, R. (2012). Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proceedings of the National Academy of Sciences, 201112345.
 
[13]  Hahn, M. K., & Blakely, R. D. (2002). Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. The pharmacogenomics journal, 2(4), 217.
 
[14]  Delorme, R., Betancur, C., Wagner, M., Krebs, M. O., Gorwood, P., Pearl, P., ... & Melke, J. (2005). Support for the association between the rare functional variant I425V of the serotonin transporter gene and susceptibility to obsessive compulsive disorder. Molecular psychiatry, 10(12), 1059.
 
[15]  Ozaki, N., Goldman, D., Kaye, W. H., Plotnicov, K., Greenberg, B. D., Lappalainen, J., ... & Murphy, D. L. (2003). Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Molecular psychiatry, 8(11), 933.
 
[16]  Forrest, L. R., Tavoulari, S., Zhang, Y. W., Rudnick, G., & Honig, B. (2007). Identification of a chloride ion binding site in Na+/Cl−-dependent transporters. Proceedings of the National Academy of Sciences, 104(31), 12761-12766.
 
[17]  Amara, S. G., & Sonders, M. S. (1998). Neurotransmitter transporters as molecular targets for addictive drugs. Drug & Alcohol Dependence, 51(1), 87-96.
 
[18]  Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual review of medicine, 60, 355-366.
 
[19]  Murphy, D. L., Lerner, A., Rudnick, G., & Lesch, K. P. (2004). Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Molecular interventions, 4(2), 109.
 
[20]  Beuming, T., Shi, L., Javitch, J. A., & Weinstein, H. (2006). A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Molecular pharmacology.
 
[21]  Mitchell, P. (1957). A general theory of membrane transport from studies of bacteria. Nature, 180(4577), 134.
 
[22]  Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature, 211(5052), 969.
 
[23]  Forrest, L. R., Zhang, Y. W., Jacobs, M. T., Gesmonde, J., Xie, L., Honig, B. H., & Rudnick, G. (2008). Mechanism for alternating access in neurotransmitter transporters. Proceedings of the National Academy of Sciences, 105(30), 10338-10343.
 
[24]  Zhang, Y. W., & Rudnick, G. (2006). The cytoplasmic substrate permeation pathway of serotonin transporter. Journal of biological chemistry, 281(47), 36213-36220.
 
[25]  Shi, L., Quick, M., Zhao, Y., Weinstein, H., & Javitch, J. A. (2008). The mechanism of a neurotransmitter: sodium symporter-inward release of Na+ and substrate is triggered by substrate in a second binding site. Molecular cell, 30(6), 667-677.
 
[26]  Zhao, Y., Terry, D. S., Shi, L., Quick, M., Weinstein, H., Blanchard, S. C., & Javitch, J. A. (2011). Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature, 474(7349), 109.
 
[27]  Kristensen, A. S., Andersen, J., Jørgensen, T. N., Sørensen, L., Eriksen, J., Loland, C. J., ... & Gether, U. (2011). SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacological reviews, pr-108.
 
[28]  Manepalli, S., Surratt, C. K., Madura, J. D., & Nolan, T. L. (2012). Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective. The AAPS journal, 14(4), 820-831.
 
[29]  Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., & Gouaux, E. (2005). Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature, 437(7056), 215.
 
[30]  Forrest, L. R., Tavoulari, S., Zhang, Y. W., Rudnick, G., & Honig, B. (2007). Identification of a chloride ion binding site in Na+/Cl−-dependent transporters. Proceedings of the National Academy of Sciences, 104(31), 12761-12766.
 
[31]  Vandenberg, R. J., Shaddick, K., & Ju, P. (2007). Molecular basis for substrate discrimination by glycine transporters. Journal of Biological Chemistry.
 
[32]  Dodd, J. R., & Christie, D. L. (2007). Selective amino acid substitutions convert the creatine transporter to a γ-aminobutyric acid transporter. Journal of Biological Chemistry, 282(21), 15528-15533.
 
[33]  Zomot, E., Bendahan, A., Quick, M., Zhao, Y., Javitch, J. A., & Kanner, B. I. (2007). Mechanism of chloride interaction with neurotransmitter: sodium symporters. Nature, 449(7163), 726.
 
[34]  Beuming, T., Kniazeff, J., Bergmann, M. L., Shi, L., Gracia, L., Raniszewska, K., ... & Loland, C. J. (2008). The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nature neuroscience, 11(7), 780.
 
[35]  Celik, L., Sinning, S., Severinsen, K., Hansen, C. G., Møller, M. S., Bols, M., ... & Schiøtt, B. (2008). Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. Journal of the American Chemical Society, 130(12), 3853-3865.
 
[36]  Coleman, J. A., Green, E. M., & Gouaux, E. (2016). X-ray structures and mechanism of the human serotonin transporter. Nature, 532(7599), 334.
 
[37]  Nolan, T. L., Lapinsky, D. J., Talbot, J. N., Indarte, M., Liu, Y., Manepalli, S., ... & Surratt, C. K. (2011). Identification of a novel selective serotonin reuptake inhibitor by coupling monoamine transporter-based virtual screening and rational molecular hybridization. ACS chemical neuroscience, 2(9), 544-552.
 
[38]  Accelrys Software Inc., (2009). Discovery Studio Modeling Environment, Release 2.5.1, San Diego, CA.
 
[39]  Molecular Operating Environment (MOE). (2012). 2010.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite# 910, Montreal, QC, Canada, H3A 2R7.
 
[40]  Gabrielsen, M., Ravna, A. W., Kristiansen, K., & Sylte, I. (2012). Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations. Journal of molecular modeling, 18(3), 1073-1085.
 
[41]  Abagyan, R., Totrov, M., & Kuznetsov, D. (1994). ICM-a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. Journal of computational chemistry, 15(5), 488-506.
 
[42]  Manepalli, S., Geffert, L. M., Surratt, C. K., & Madura, J. D. (2011). Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. Journal of chemical information and modeling, 51(9), 2417-2426.
 
[43]  Shi, Z., Ma, X. H., Qin, C., Jia, J., Jiang, Y. Y., Tan, C. Y., & Chen, Y. Z. (2012). Combinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries. Journal of Molecular Graphics and Modelling, 32, 49-66.
 
[44]  Gabrielsen, M., Kurczab, R., Ravna, A. W., Kufareva, I., Abagyan, R., Chilmonczyk, Z., ... & Sylte, I. (2012). Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol. European journal of medicinal chemistry, 47, 24-37.
 
[45]  Kortagere, S., Fontana, A. C. K., Rose, D. R., & Mortensen, O. V. (2013). Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action. Neuropharmacology, 72, 282-290.
 
[46]  Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., ... & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of computational chemistry, 26(16), 1781-1802.
 
[47]  Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of molecular biology, 245(1), 43-53.
 
[48]  Zhou, Z. L., Liu, H. L., Wu, J. W., Tsao, C. W., Chen, W. H., Liu, K. T., & Ho, Y. (2013). Combining Structure-Based Pharmacophore and In Silico Approaches to Discover Novel Selective Serotonin Reuptake Inhibitors. Chemical biology & drug design, 82(6), 705-717.
 
[49]  Gabrielsen, M., Kurczab, R., Siwek, A., Wolak, M., Ravna, A. W., Kristiansen, K., ... & Sylte, I. (2014). Identification of novel serotonin transporter compounds by virtual screening. Journal of chemical information and modeling, 54(3), 933-943.
 
[50]  Koldsø, H., Autzen, H. E., Grouleff, J., & Schiøtt, B. (2013). Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations. PLoS One, 8(6), e63635.
 
[51]  Xue, W., Wang, P., Li, B., Li, Y., Xu, X., Yang, F., ... & Zhu, F. (2016). Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Physical Chemistry Chemical Physics, 18(4), 3260-3271.
 
[52]  O'Brien, F. E., Dinan, T. G., Griffin, B. T., & Cryan, J. F. (2012). Interactions between antidepressants and P‐glycoprotein at the blood–brain barrier: clinical significance of in vitro and in vivo findings. British journal of pharmacology, 165(2), 289-312.
 
[53]  Löscher, W., & Potschka, H. (2005). Drug resistance in brain diseases and the role of drug efflux transporters. Nature Reviews Neuroscience, 6(8), 591.
 
[54]  Karlsson, L., Carlsson, B., Hiemke, C., Ahlner, J., Bengtsson, F., Schmitt, U., & Kugelberg, F. C. (2013). Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment. European Neuropsychopharmacology, 23(11), 1636-1644.
 
[55]  O'Brien, F. E., Clarke, G., Dinan, T. G., Cryan, J. F., & Griffin, B. T. (2013). Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood–brain barrier permeability. International Journal of Neuropsychopharmacology, 16(10), 2259-2272.
 
[56]  Reddy, D. R., Khurana, A., Bale, S., Ravirala, R., Reddy, V. S. S., Mohankumar, M., & Godugu, C. (2016). Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs. SpringerPlus, 5(1), 1618.
 
[57]  Pariante, C. M., Thomas, S. A., Lovestone, S., Makoff, A., & Kerwin, R. W. (2004). Do antidepressants regulate how cortisol affects the brain?. Psychoneuroendocrinology, 29(4), 423-447.
 
[58]  Clarke, G., O'mahony, S. M., Cryan, J. F., & Dinan, T. G. (2009). Verapamil in treatment resistant depression: a role for the P-glycoprotein transporter?. Human Psychopharmacology: Clinical and Experimental, 24(3), 217-223.
 
[59]  O'brien, F. E., Clarke, G., Fitzgerald, P., Dinan, T. G., Griffin, B. T., & Cryan, J. F. (2012). Inhibition of P‐glycoprotein enhances transport of imipramine across the blood–brain barrier: microdialysis studies in conscious freely moving rats. British journal of pharmacology, 166(4), 1333-1343.
 
[60]  Ma, X. L., Chen, C., & Yang, J. (2005). Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 26(4), 500.
 
[61]  Coleman, J. A., Green, E. M., & Gouaux, E. (2016). X-ray structures and mechanism of the human serotonin transporter. Nature, 532(7599), 334.