[1] | World Health Organization (WHO). Depression Fact sheet N°369. Published October 2012. Retrieved from: http://www.who.int/mediacentre/factsheets/fs369/en/. Accessed June 2015. |
|
[2] | World Health Organization (WHO). Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. 2011. Retrieved from: http://apps.who.int/gb/ebwha/pdf_files/EB130/B130_9-en.pdf. Accessed June 2015 |
|
[3] | World Health Organization (WHO) (2012). Depression A global public Health concern. http://www.who.int/mental_health/management/depression/who_paper_depression_wfmh_2012.pdf accessed on March 3, 2018. |
|
[4] | U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Mental Health. (2015). Depression (NIH Publication No. 15-3561). Bethesda, MD: U.S. Government Printing Office |
|
[5] | Coppen, A. (1967). The biochemistry of affective disorders. The British Journal of Psychiatry, 113(504), 1237-1264. |
|
[6] | Delgado, P. L. (2000). Depression: the case for a monoamine deficiency. The Journal of clinical psychiatry. |
|
[7] | Hirschfeld, R. M. (2000). History and evolution of the monoamine hypothesis of depression. The Journal of clinical psychiatry, 61, 4-6. |
|
[8] | Salomon, R. M., Miller, H. L., Krystal, J. H., Heninger, G. R., & Charney, D. S. (1997). Lack of behavioral effects of monoamine depletion in healthy subjects. Biological Psychiatry, 41(1), 58-64. |
|
[9] | Vandenberg, R. J., Shaddick, K., & Ju, P. (2007). Molecular basis for substrate discrimination by glycine transporters. Journal of Biological Chemistry. |
|
[10] | Murphy, D. L., Lerner, A., Rudnick, G., & Lesch, K. P. (2004). Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Molecular interventions, 4(2), 109. |
|
[11] | Sutcliffe, J. S., Delahanty, R. J., Prasad, H. C., McCauley, J. L., Han, Q., Jiang, L., ... & Blakely, R. D. (2005). Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. The American Journal of Human Genetics, 77(2), 265-279. |
|
[12] | Veenstra-VanderWeele, J., Muller, C. L., Iwamoto, H., Sauer, J. E., Owens, W. A., Shah, C. R., ... & Ye, R. (2012). Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proceedings of the National Academy of Sciences, 201112345. |
|
[13] | Hahn, M. K., & Blakely, R. D. (2002). Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. The pharmacogenomics journal, 2(4), 217. |
|
[14] | Delorme, R., Betancur, C., Wagner, M., Krebs, M. O., Gorwood, P., Pearl, P., ... & Melke, J. (2005). Support for the association between the rare functional variant I425V of the serotonin transporter gene and susceptibility to obsessive compulsive disorder. Molecular psychiatry, 10(12), 1059. |
|
[15] | Ozaki, N., Goldman, D., Kaye, W. H., Plotnicov, K., Greenberg, B. D., Lappalainen, J., ... & Murphy, D. L. (2003). Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Molecular psychiatry, 8(11), 933. |
|
[16] | Forrest, L. R., Tavoulari, S., Zhang, Y. W., Rudnick, G., & Honig, B. (2007). Identification of a chloride ion binding site in Na+/Cl−-dependent transporters. Proceedings of the National Academy of Sciences, 104(31), 12761-12766. |
|
[17] | Amara, S. G., & Sonders, M. S. (1998). Neurotransmitter transporters as molecular targets for addictive drugs. Drug & Alcohol Dependence, 51(1), 87-96. |
|
[18] | Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual review of medicine, 60, 355-366. |
|
[19] | Murphy, D. L., Lerner, A., Rudnick, G., & Lesch, K. P. (2004). Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Molecular interventions, 4(2), 109. |
|
[20] | Beuming, T., Shi, L., Javitch, J. A., & Weinstein, H. (2006). A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Molecular pharmacology. |
|
[21] | Mitchell, P. (1957). A general theory of membrane transport from studies of bacteria. Nature, 180(4577), 134. |
|
[22] | Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature, 211(5052), 969. |
|
[23] | Forrest, L. R., Zhang, Y. W., Jacobs, M. T., Gesmonde, J., Xie, L., Honig, B. H., & Rudnick, G. (2008). Mechanism for alternating access in neurotransmitter transporters. Proceedings of the National Academy of Sciences, 105(30), 10338-10343. |
|
[24] | Zhang, Y. W., & Rudnick, G. (2006). The cytoplasmic substrate permeation pathway of serotonin transporter. Journal of biological chemistry, 281(47), 36213-36220. |
|
[25] | Shi, L., Quick, M., Zhao, Y., Weinstein, H., & Javitch, J. A. (2008). The mechanism of a neurotransmitter: sodium symporter-inward release of Na+ and substrate is triggered by substrate in a second binding site. Molecular cell, 30(6), 667-677. |
|
[26] | Zhao, Y., Terry, D. S., Shi, L., Quick, M., Weinstein, H., Blanchard, S. C., & Javitch, J. A. (2011). Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature, 474(7349), 109. |
|
[27] | Kristensen, A. S., Andersen, J., Jørgensen, T. N., Sørensen, L., Eriksen, J., Loland, C. J., ... & Gether, U. (2011). SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacological reviews, pr-108. |
|
[28] | Manepalli, S., Surratt, C. K., Madura, J. D., & Nolan, T. L. (2012). Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective. The AAPS journal, 14(4), 820-831. |
|
[29] | Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., & Gouaux, E. (2005). Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature, 437(7056), 215. |
|
[30] | Forrest, L. R., Tavoulari, S., Zhang, Y. W., Rudnick, G., & Honig, B. (2007). Identification of a chloride ion binding site in Na+/Cl−-dependent transporters. Proceedings of the National Academy of Sciences, 104(31), 12761-12766. |
|
[31] | Vandenberg, R. J., Shaddick, K., & Ju, P. (2007). Molecular basis for substrate discrimination by glycine transporters. Journal of Biological Chemistry. |
|
[32] | Dodd, J. R., & Christie, D. L. (2007). Selective amino acid substitutions convert the creatine transporter to a γ-aminobutyric acid transporter. Journal of Biological Chemistry, 282(21), 15528-15533. |
|
[33] | Zomot, E., Bendahan, A., Quick, M., Zhao, Y., Javitch, J. A., & Kanner, B. I. (2007). Mechanism of chloride interaction with neurotransmitter: sodium symporters. Nature, 449(7163), 726. |
|
[34] | Beuming, T., Kniazeff, J., Bergmann, M. L., Shi, L., Gracia, L., Raniszewska, K., ... & Loland, C. J. (2008). The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nature neuroscience, 11(7), 780. |
|
[35] | Celik, L., Sinning, S., Severinsen, K., Hansen, C. G., Møller, M. S., Bols, M., ... & Schiøtt, B. (2008). Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. Journal of the American Chemical Society, 130(12), 3853-3865. |
|
[36] | Coleman, J. A., Green, E. M., & Gouaux, E. (2016). X-ray structures and mechanism of the human serotonin transporter. Nature, 532(7599), 334. |
|
[37] | Nolan, T. L., Lapinsky, D. J., Talbot, J. N., Indarte, M., Liu, Y., Manepalli, S., ... & Surratt, C. K. (2011). Identification of a novel selective serotonin reuptake inhibitor by coupling monoamine transporter-based virtual screening and rational molecular hybridization. ACS chemical neuroscience, 2(9), 544-552. |
|
[38] | Accelrys Software Inc., (2009). Discovery Studio Modeling Environment, Release 2.5.1, San Diego, CA. |
|
[39] | Molecular Operating Environment (MOE). (2012). 2010.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite# 910, Montreal, QC, Canada, H3A 2R7. |
|
[40] | Gabrielsen, M., Ravna, A. W., Kristiansen, K., & Sylte, I. (2012). Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations. Journal of molecular modeling, 18(3), 1073-1085. |
|
[41] | Abagyan, R., Totrov, M., & Kuznetsov, D. (1994). ICM-a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. Journal of computational chemistry, 15(5), 488-506. |
|
[42] | Manepalli, S., Geffert, L. M., Surratt, C. K., & Madura, J. D. (2011). Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. Journal of chemical information and modeling, 51(9), 2417-2426. |
|
[43] | Shi, Z., Ma, X. H., Qin, C., Jia, J., Jiang, Y. Y., Tan, C. Y., & Chen, Y. Z. (2012). Combinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries. Journal of Molecular Graphics and Modelling, 32, 49-66. |
|
[44] | Gabrielsen, M., Kurczab, R., Ravna, A. W., Kufareva, I., Abagyan, R., Chilmonczyk, Z., ... & Sylte, I. (2012). Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol. European journal of medicinal chemistry, 47, 24-37. |
|
[45] | Kortagere, S., Fontana, A. C. K., Rose, D. R., & Mortensen, O. V. (2013). Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action. Neuropharmacology, 72, 282-290. |
|
[46] | Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., ... & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of computational chemistry, 26(16), 1781-1802. |
|
[47] | Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of molecular biology, 245(1), 43-53. |
|
[48] | Zhou, Z. L., Liu, H. L., Wu, J. W., Tsao, C. W., Chen, W. H., Liu, K. T., & Ho, Y. (2013). Combining Structure-Based Pharmacophore and In Silico Approaches to Discover Novel Selective Serotonin Reuptake Inhibitors. Chemical biology & drug design, 82(6), 705-717. |
|
[49] | Gabrielsen, M., Kurczab, R., Siwek, A., Wolak, M., Ravna, A. W., Kristiansen, K., ... & Sylte, I. (2014). Identification of novel serotonin transporter compounds by virtual screening. Journal of chemical information and modeling, 54(3), 933-943. |
|
[50] | Koldsø, H., Autzen, H. E., Grouleff, J., & Schiøtt, B. (2013). Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations. PLoS One, 8(6), e63635. |
|
[51] | Xue, W., Wang, P., Li, B., Li, Y., Xu, X., Yang, F., ... & Zhu, F. (2016). Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Physical Chemistry Chemical Physics, 18(4), 3260-3271. |
|
[52] | O'Brien, F. E., Dinan, T. G., Griffin, B. T., & Cryan, J. F. (2012). Interactions between antidepressants and P‐glycoprotein at the blood–brain barrier: clinical significance of in vitro and in vivo findings. British journal of pharmacology, 165(2), 289-312. |
|
[53] | Löscher, W., & Potschka, H. (2005). Drug resistance in brain diseases and the role of drug efflux transporters. Nature Reviews Neuroscience, 6(8), 591. |
|
[54] | Karlsson, L., Carlsson, B., Hiemke, C., Ahlner, J., Bengtsson, F., Schmitt, U., & Kugelberg, F. C. (2013). Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment. European Neuropsychopharmacology, 23(11), 1636-1644. |
|
[55] | O'Brien, F. E., Clarke, G., Dinan, T. G., Cryan, J. F., & Griffin, B. T. (2013). Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood–brain barrier permeability. International Journal of Neuropsychopharmacology, 16(10), 2259-2272. |
|
[56] | Reddy, D. R., Khurana, A., Bale, S., Ravirala, R., Reddy, V. S. S., Mohankumar, M., & Godugu, C. (2016). Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs. SpringerPlus, 5(1), 1618. |
|
[57] | Pariante, C. M., Thomas, S. A., Lovestone, S., Makoff, A., & Kerwin, R. W. (2004). Do antidepressants regulate how cortisol affects the brain?. Psychoneuroendocrinology, 29(4), 423-447. |
|
[58] | Clarke, G., O'mahony, S. M., Cryan, J. F., & Dinan, T. G. (2009). Verapamil in treatment resistant depression: a role for the P-glycoprotein transporter?. Human Psychopharmacology: Clinical and Experimental, 24(3), 217-223. |
|
[59] | O'brien, F. E., Clarke, G., Fitzgerald, P., Dinan, T. G., Griffin, B. T., & Cryan, J. F. (2012). Inhibition of P‐glycoprotein enhances transport of imipramine across the blood–brain barrier: microdialysis studies in conscious freely moving rats. British journal of pharmacology, 166(4), 1333-1343. |
|
[60] | Ma, X. L., Chen, C., & Yang, J. (2005). Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 26(4), 500. |
|
[61] | Coleman, J. A., Green, E. M., & Gouaux, E. (2016). X-ray structures and mechanism of the human serotonin transporter. Nature, 532(7599), 334. |
|