American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: https://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2025, 13(1), 6-18
DOI: 10.12691/ajps-13-1-2
Open AccessArticle

Designing and Evaluation of Novel Thiazole Derivatives As COX Inhibitor by Ivlcb: In-vitro Like Computational Bioassay & Docking Analysis

Utsav Kumar1, Nitin Sharma1, Harsh Tyagi1, Ajeet 1, , Babita Kumar1, Shabnam Ain1 and Qurratul Ain1

1Department of Medicinal Chemistry & Drug Design, Sanskar College of Pharmacy and Research, Ghaziabad, India

Pub. Date: April 23, 2025

Cite this paper:
Utsav Kumar, Nitin Sharma, Harsh Tyagi, Ajeet , Babita Kumar, Shabnam Ain and Qurratul Ain. Designing and Evaluation of Novel Thiazole Derivatives As COX Inhibitor by Ivlcb: In-vitro Like Computational Bioassay & Docking Analysis. American Journal of Pharmacological Sciences. 2025; 13(1):6-18. doi: 10.12691/ajps-13-1-2

Abstract

COX (Cyclooxygenase) is also known as prostaglandin-endoperoxide synthase (PTGS) which is responsible for inflammation and related issues. In the present study eleven thiazole derivatives were designed and computationlly evaluated for their inhibitory activity against COX enzyme. All eleven novel designed molecules were evaluated by IvLCB: In-vitro like computational bioassay and SwissDock. These molecules were also evaluated for their ADME descriptors and bioactivity prediction using Molinspiration for bioacitivity scores for the drug targets like GPCR ligands, kinase inhibitors, ion channel modulators, nuclear receptors etc. As per the analysis done it was found that designed molecule 2A8 shows High activity pattern, good % inhibition and strong binding ability to PDB ID: 4M11 with 14 hydrogen bonds and binding affinity of -10 kcal/mol.

Keywords:
COX inhibitors thiazole derivatives computational study docking in-silico analysis in-vitro like computational bioassay

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Leval, X., Julémont, F., Delarge, J., Pirotte, B., Dogné, J.M. “New trends in dual 5-LOX/COX inhibition,” Curr. Med. Chem, 9(9). 941–962.2002.
 
[2]  Martel-Pelletier, J., Lajeunesse, D., Reboul, P., Pelletier, J.P. “Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs,” Ann. Rheum Dis, 62(6). 501–509.2003.
 
[3]  Araniciu, C., Parvu, A., Tiperciuc, B., Palage, M., Oniga, S., Verite, P., Oniga, O. “Synthesis and evaluation of the anti-inflammatory activity of some 2-(trimethoxyphenyl)-4-R1-5-R2-thiazole,” Dig. J. Nanomater. Biostruct, 8(2). 699–709.2013.
 
[4]  Zhang, Q.L., Zhang, J., Xia, P.F., Peng, X.J., Li H.L., Jin, H., Li Y., Yang, J., Zhao, L. “Anti-inflammatory activities of gentiopicroside against iNOS and COX-2 targets Chinese Herbal Medicines,” 11 (1). 108-12.2019. ID: wpr-842098.
 
[5]  Yatam, S., Gundla, R., Jadav, SS., Reddy, Pedavenkatagari N., Chimakurthy, J., Kedam, T., “Focused library design and synthesis of 2-mercapto benzothiazole linked 1, 2, 4-oxadiazoles as COX2/5-LOX inhibitors,” Journal of Molecular Structure, 1159. 193-204.2018.
 
[6]  Zampelas, A., & Micha, R. “Antioxidants in health and disease,” CRC Press, 1. Jun.2015.
 
[7]  Levita, J., Rositama, MR., Alias, N., Khalida, N., Saptarini NM, Megantara S, 7. Jul.2017.
 
[8]  Lon, H.K., Liu, D., Jusko, W. J. “Pharmacokinetic/ pharmacodynamic modeling in inflammation,” Crit. Rev. Biomed. Eng, 40(4). 295– 312.2012.
 
[9]  Ferreira, S.H., Vane, J.R. “New aspects of the mode of action of nonsteroid anti-inflammatory drugs,” Annu. Rev. Pharmacol, 14(1). 57– 73.1974.
 
[10]  Vane, J. R. “Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature,” New Biol, 231. 232– 235. Jun.1971.
 
[11]  Jain, H.K., Mourya, V.K., Agrawal, R.K. “Inhibitory mode of 2-acetoxyphenyl alkyl sulfides against COX-1 and COX-2: QSAR analyses,”. Bioorg. Med. Chem. Lett, 16(20). 5280– 5284.2006.
 
[12]  Anana, R.; Rao, P. N. P.; Chen, Q.-H.; Knaus, E. E. “Synthesis and biological evaluation of linear phenylethynylbenzenesulfonamide regioisomers as cyclooxygenase-1/-2 (COX-1/-2) inhibitors,” Bioorg. Med Chem, 14(15). 5259– 5265.2006.
 
[13]  Kovala-Demertzi, D. “Recent advances on non-steroidal anti-inflammatory drugs, NSAIDs: organotin complexes of NSAIDs,”. J. Organomet. Chem, 691(8). 1767– 1774.2006.
 
[14]  Tacconelli, S.; Capone, M. L.; Sciulli, M. G.; Ricciotti, E.; Patrignani, P. “T biochemical selectivity of novel COX-2 inhibitors in whole blood assays of COX-isozyme activity,”. Curr. Med. Res. Opin,he, 18(8). 503– 511.2002.
 
[15]  Tiwari, A. D., Panda, S. S., Girgis, A. S., Sahu, S., George, R. F., Srour, A. M., Starza, B. L., Asiri, A. M., Hall, C. D., Katritzky. “A. R. Microwave assisted synthesis and QSAR study of novel NSAID acetaminophen conjugates with amino acid linkers,” Org. Biomol. Chem, 12(37). 7238– 7249.2014.
 
[16]  Al-Saeed, A. “Gastrointestinal and Cardiovascular Risk of Nonsteroidal Anti-inflammatory Drugs,” Oman Med. J, 26(6). 385–391.2011.
 
[17]  Knights, K.M., Mangoni, A.A., Miners, J.O. “Defining the COX inhibitor selectivity of NSAIDs: Implications for understanding toxicity,” Expert Rev. Clin. Pharmacol, 3(6). 769–776. 2010.
 
[18]  Hoxha., “M. Asystematic review on the role of eicosanoid pathways in rheumatoid arthritis,”. Adv. Med. Sci, 63(1). 22–29.2018.
 
[19]  Bhala, N., Emberson, J., Merhi, A., Abramson, S., Arber, N., Baron, J., Bombardier, C., Cannon. “C. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomized trials. Lancet, 382(9894). 769–779.2013.
 
[20]  Borne, R., Mark, L., Wilson, In Foye’s Principles of Medicinal Chemistry N. Nonsteroidal Anti-Inflammatory Drugs, Thomas, L.L., David, A.W., Victoria, F.R., Zito, W., Eds, Wolters Kluwer. Lippincott Williams & Wilkins: Baltimore, MD, USA, 2013, 1021. ISBN 9781609133450.
 
[21]  Patrono, C., Rocca, In Antiplatelet Agents B: Aspirin and Other COX-1 Inhibitors, Gresele, P., Born, G.V.R., Patrono, C., Page, C.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012, 137–164, ISBN 978-3-642-29423-5.
 
[22]  Baigent, C., Bhala, N., Emberson, J., Merhi, A., Abramson, S., Arber, N., Baron, J.A., Bombardier, C., Cannon, C., Farkouh, M.E., et al. “Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: Meta-analyses of individual participant data from randomised trials,” Lancet, 382(9894). 769–779. 2013.
 
[23]  Bansal, S., Bala, M., Suthar, S.K., Choudhary, S., Bhattacharya, S., Bhardwaj, V., Singla, S., Joseph. “A. Design and synthesis of novel 2-phenyl-5- (1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity. Eur. J. Med. Chem, 80. 167–174 Jun.2014.
 
[24]  Oniga, S., Pacureanu, L., Stoica, C., Palage, M., Craciun, A., Rusu, L., Crisan, E., Araniciu. “C. COX Inhibition Profile and Molecular Docking Studies of Some 2-(Trimethoxyphenyl)-Thiazoles,” Molecules, 22(9). 1507. Sept. 2017.
 
[25]  Fontecave, M., Ollagnier-De-Choudens, S., Mulliez, E. “Biological radical sulfur insertion reactions,” Chem. Rev, 03. 2149–2166. 2003.
 
[26]  De Souza. “M.V.N. Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds,” J. Sulfur Chem, 26. 429–449. 2005.
 
[27]  Dondoni, A. “New Perspectives in Thiazole Chemistry Phosphorus Sulfur Relat. Elem,” 24(1-2). 1–38. 1985.
 
[28]  Crews, P.; Kakou, Y.; Quiñoà, “E. Mycothiazole, a Polyketide Heterocycle from a Marine Sponge,” J. Am. Chem. Soc, 110. 4365–4368. 1988.
 
[29]  Liu, Y., Sun, X., Zhang, X., Liu, J., Du. “Y. Concise synthesis of 2,4-disubstituted thiazoles from -azido disulfides and carboxylic acids or anhydrides: Asymmetric synthesis of cystothiazole C,” Org. Biomol Chem, 12(42). 8453–8461.Aug2014.
 
[30]  Shiradkar, M.R., Murahari, K.K., Gangadasu, H.R., Suresh, T., Kalyan, C.A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokale, V., et al. “Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents,” Bioorg. Med. Chem, 15. 3997–4008. 2007.
 
[31]  Karegoudar, P., Karthikeyan, M.S., Prasad, D.J., Mahalinga, M., Holla, B.S., Kumari, N.S. “Synthesis of some novel 2,4-disubstituted thiazoles as possible antimicrobial agents,” Eur. J. Med. Chem, 43 (2). 261–267.2008.
 
[32]  Liaras, K., Geronikaki, A., Glamočlija, J., C´ iric´, A., Sokovic´, M. “Thiazole-based chalcones as potent antimicrobial agents. Synthesis and biological evaluation,” Bioorg. Med. Chem, 19 (10). 3135–3140.2011.
 
[33]  Liaras, K., Geronikaki, A., Glamočlija, J., C´ iric´, A., Sokovic´, M. “Thiazole-based aminopyrimidines and N-phenylpyrazolines as potent antimicrobial agents: Synthesis and biological evaluation,” Med. Chem. Commun, 5(7). 915–922.2014.
 
[34]  Reddy, G.M., Garcia, J.R., Reddy, V.H., de Andrade, A.M., Camilo, A., Jr., Pontes, R.A.P., de Lazaro, L. “Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives,” Eur. J. Med. Chem, 123. 508–513.2016.
 
[35]  Bondock, S., Fouda, A.M. “Syntheis and evaluation of some new 5-(hetaryl)thiazoles as potential antimicrobial agents,” Synth. Commun, 48(5). 561–573.2018.
 
[36]  El-Sabbagh, O.I., Baraka, M.M., Ibrahim, S.M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J., Rashad, A.A., “Synthesis and antiviral activity of new pyrazole and thiazole derivatives,” Eur. J. Med. Chem, 44(9). 3746–3753.2009.
 
[37]  Dawood, K.M., Eldebss, T.M.A., El-Zahabi, H.S.A., Yousef. M.H. “Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives,” Eur. J. Med. Chem, 102. 266–276. 2015.
 
[38]  Aridoss, G., Amirthaganesan, S., Kim, M.S., Kim, J.T., Jeong, Y.T. “Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones,” Eur. J. Med. Chem, 44(10). 4199–4210.2009.
 
[39]  Kalkhambkar, R.G., Kulkarni, G.M., Shivkumar, H., Rao, R.N. “Synthesis of novel triheterocyclicthiazoles as anti-inflammatory and analgesic agents,” Eur. J. Med. Chem, 42(10). 1272–1276. 2007.
 
[40]  Mohareb, R.M., Zaki, M.Y., Abbas, N.S. “Synthesis, anti-inflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione,” Steroids, 98. 80–91.2015. PubMed Id 25759119.
 
[41]  Kouatly, O., Geronikaki, A., Kamoutsis, C., Hadjipavlou-Litina, D., Eleftheriou, P. “Adamantane derivatives of thiazolyl-N-substituted amide, as possible non-steroidal anti-inflammatory agents,” Eur. J. Med. Chem, 44(3). 1198–1204.2009.
 
[42]  Geronikaki, A., Babaev, E., Dearden, J., Dehaen, W., Filimonov, D., Galaeva, I., Krajneva, V., Lagunin, A., MacAev, F., Molodavkin, G., et al. “Design, synthesis, computational and biological evaluation of new anxiolytics,” Bioorg. Med. Chem, 12(24). 6559–6568.2004.
 
[43]  Geronikaki, A., Vicini, P., Dabarakis, N., Lagunin, A., Poroikov, V., Dearden, J., Modarresi, H., Hewitt, M., Theophilidis, G. “Evaluation of the local anaesthetic activity of 3-aminobenzo[d]isothiazole derivatives using the rat sciatic nerve model,” Eur. J. Med. Chem, 44(2). 473–481.2009.
 
[44]  Dawood, K.M., Abdel-Gawad, H., Rageb, E.A., Ellithey, M., Mohamed, H.A. “Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles,” Bioorg. Med. Chem, 14(11). 3672–3680. 2006.
 
[45]  Amin, K.M., Rahman, D.E.A., Al-Eryani, Y.A. “Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents,” Bioorg. Med. Chem, 16(10). 5377–5388. 2008.
 
[46]  Ghabbour, H.A., Kadi, A.A., Eltahir, K.E.H., Angawi, R.F., El-Subbagh, H.I. “Synthesis, biological evaluation and molecular docking studies of thiazole-based pyrrolidinones and isoindolinediones as anticonvulsant agents,” Med. Chem. Res, 24(8). 3194–3211. 2015.
 
[47]  Ła˛czkowski, K.Z., Sałat, K., Misiura, K., Podkowa, A., Malikowska, N. “Synthesis and anticonvulsant activities of novel 2-(cyclopentylmethylene) hydrazinyl-1,3-thiazoles in mouse models of seizures,” J. Enzym. Inhib. Med. Chem, 31(6). 1576–1582.2016.
 
[48]  Miyamoto, T., Ogino, M., Yamamoto, S., Hayaishin. O., “Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes,” J Biol Chem, 259. 2629-2636.1976. PMID: 816795.
 
[49]  DeWitt, D. L., Smith, W. L., “Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence,” Proc Natl Acad Sci USA, 85(5). 1412-1416.1988.
 
[50]  Merlie, J. P., Fagan, D., Mudd, J., Needleman, P., “Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase),” J Biol Chem, 263. 3550-3553.1988. PMID: 2831188.
 
[51]  Yokoyama, C., Takai, T., Tanabe, T., “Primary structure of sheep prostaglandin endoperoxide synthase deduced from cDNA sequence,” FEBS Lett, 231(2). 347-351.1988.
 
[52]  Masferrer, J. L., Zweifel, B. S., Seibert, K., Needleman, P., “Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice,” J Clin Invest, 86(4). 1375-1379.1990.
 
[53]  Xie, W. L., Chipman, J. G., Robertson, D. L., Erikson, R. L., Simmons, D. L., “Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing,” Proc Natl Acad Sci USA, 88(7). 2692- 2696.1991. 10.1073/pnas.88.7.2692.
 
[54]  Kujubu, D. A., Herschman, H. R., “Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/cyclooxygenase gene,” J Biol Chem, 267(12). 7991-7994.1992. PMID:1569057.
 
[55]  Yokoyama, C., Takai, T., Tanabe, T., “Primary structure of sheep prostaglandin endoperoxide synthase deduced from cDNA sequence,” FEBS Lett, 231(2). 347-351. 1988.
 
[56]  Picot, D., Loll, P. J., Garavito, R. M., “The x-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature,” 367. 243- 249.1994.
 
[57]  Smith, W. L., DeWitt, D. L., “Prostaglandin endoperoxide H synthases-1 and -2,” Adv Immunol, 62. 167-215.1996.
 
[58]  Lim, H., Paria, B. C., Das, S. K., Dinchuk, J. E., Langenbach, R., Trzaskos, J. M., Dey, S. K., “Multiple female reproductive failures in cyclooxygenase-2 deficient mice. Cell,” 91(2). 197- 208.1997.
 
[59]  Cheng, H. F., Wang, J. L., Zhang, M. Z., Miyazaki, Y., Ichikawa, I., McKanna, J. A., Harris, R. C., “Angiotensin II attenuates renal cortical cyclooxygenase-2 expression,” J Clin Invest 103(7):953-961, 1999.
 
[60]  Breder, C. D., DeWitt, D. L., Kraig, R. P., “Characterization of inducible cyclooxygenase in rat brain,” J Comp Neurol, 355(2). 296-315.1995.
 
[61]  Pilbeam, C. C., Fall, P. M., Alander, C. B., Raisz, L. G., “Differential effects of non-steroidal anti-inflammatory drugs on constitutive and inducible prostaglandin G/H synthase in cultured bone cells,” J Bone Miner Res, 12(8). 1198-1203.1997.
 
[62]  Ajeet, Kumar A., Mishra A. K., “Design, molecular docking, synthesis, characterization, biological activity evaluation (against MES model), in-silico biological activity spectrum (PASS analysis), toxicological and predicted oral rat LD50 studies of novel sulphonamide derivatives”, Frontiers in Biology, Springer Nature, 13. 425-451.2018.
 
[63]  Maurya P. P., Ajeet., “4-Aminoquinazoline-6, 7-diol Derivatives for Enhanced EGFR Binding (as Inhibitor) Against Lung Cancer”, Letters in Applied NanoBioSciences, 13(4). 1-12. 2024.
 
[64]  El-Sayed, N. A., et al. "Thiazole-Pyrazole Hybrids as Dual COX/LOX Inhibitors." European Journal of Medicinal Chemistry, 192. 112-123. 2020.
 
[65]  Ali, M. A., et al. "Computational Insights into Thiazole Derivatives as COX-1/COX-2 Inhibitors." Journal of Molecular Graphics and Modelling, 104. 107-115. 2021.