American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: https://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2023, 11(1), 21-27
DOI: 10.12691/ajps-11-1-4
Open AccessMini Review

Some Neoteric Tin Complexes Used in Biological Properties

Jyoti Singh1, Amit Jaiswal2, and Anil Kumar Pal2

1Department of Chemistry, University of Allahabad, Prayagraj, 211002, India

2Department of Chemistry, C.M.P. Degree College, 211002, Prayagraj, India

Pub. Date: June 09, 2023

Cite this paper:
Jyoti Singh, Amit Jaiswal and Anil Kumar Pal. Some Neoteric Tin Complexes Used in Biological Properties. American Journal of Pharmacological Sciences. 2023; 11(1):21-27. doi: 10.12691/ajps-11-1-4

Abstract

Tin has a variety of advantageous biological effects. The majority of tin complexes are effective against a wide range of different disorders, including convulsion, tumor, cancer, malaria, tuberculosis, and diabetes. The majority of the tin complex exhibits drug-like antibacterial and antifungal properties. Tin complexes have greater activity than free ligands like macrocyclic and Schiff bases. A new series of tin (II) and tin (IV) complexes were formed as a result of n - heterocyclic Schiff base ligand. Three tin (IV) complexes, H-ClQ=5, 7-dichloro-8-hydroxylquinoline, H-BrQ=5, 7-dibromo-8-hydroxylquinoline, and H-ClIQ=5-chloro-7-iodo-8-hydroxylquinoline, were created. There in vitro information about the condition against the cell lines BEL7404, SKOV-3, NCI-H460, and HL-770 Having IC50 values that range from 20 nm to 5.11 mM, the compound exhibits strong anti-proliferative action against the investigated cell lines. Most complexes showed significantly increased cytotoxicity as compared to 5, 7-dihalo-8-quinolinol (except 2 against SKOV-3 and NCI-H460). Additionally, they showed some selective cytotoxicity that favoured the tested tumor cells over the healthy HL-7702 cells from the human liver. Complexes 1-3 bind DNA more firmly compared to their quinolinol ligands. Macrocyclic molecules, which include porphyrin rings connected to metal ions in cytochromes, heamoglobin, and chlorophyll, may have significant effects on the biochemistry of biological systems. The biological applications of complexes of transition metals with ligands have been the subject of extensive research. The most likely binding mode for the aggregates with their quinolinol ligands is intercalation. The significance of tin applications in biological processes is explained in this review paper.

Keywords:
tin complexes biological activity macrocyclic ligands and schiff base ligands

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Hamdan, Abdullah J., and A. Adullah. “Sn (II) selective 2-amino-1, 4-naphthoquinone derived poly (vinyl chloride) membrane sensors.” International Journal of Electrochemical Science, 5. 215-231. 2010.
 
[2]  Dehghan, Gholamreza, and Zahra Khoshkam. “Tin (II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity.” Food Chemistry, 131(2), 422-426. 2012.
 
[3]  Boogaard, P. J., Boisset, M., Blunden, S., Davies, S., Ong, T. J., & Taverne, J. P., Comparative assessment of gastrointestinal irritant potency in man of tin(II)chloride and tin migrated from packaging. Food Chemistry and Toxicology, 41, 1663-1670. 2003.
 
[4]  Trandafir, Ion, Violeta Nour, and Mira Elena Ionica. “Determination of Tin in Canned Foods by Inductively Coupled Plasma-Mass Spectrometry.” Polish Journal of Environmental Studies 21, no. 3 2012.
 
[5]  Emayavaramban M., Kumar K., Mani P., Prabhakaran B. & Muthuvel A., Synthesis, complexation, spectral and antimicrobial study of some novel-5 bromofluorobenzaldehydeoximeand semi-carbazone under ultrasonic irradiation. IJAC, 20-23. 2014.
 
[6]  Khan S.A., Asiri A.M., Al-Amry K., Malik M.A., Synthesis, characterization, electrochemical studies ,and In vitro antibacterial activity of novel Thiosemicarbazone and its Cu(II), Ni(II) and Co (II) complexes, Scientific world Journal, 592375. 2014.
 
[7]  Ali Ahmed M.F. & Yunus V.M., Microwave synthesis and antimicrobial activity of some Cu (II), Co (II), Ni(II) and Cr (III) complexes with Schiff base 2,6-pyramidine dicorboxaldeyde, thiosemicarbenzone.. Orient J .Chem.30: 111-117. 2014.
 
[8]  Kumari G., Kumar D., Singh C.P., Kumar A. & Rana V.B., Synthesis, characterization and antimicrobial activity of trivalent metal Schiff base complexes. J. Serb. Chem. Soc. 75: 629-663. 2010.
 
[9]  Shariar S.M.S., Jesmin M., Ali M.M., Antibacterial activities of some Schiff bases involving thiosemicarbazide and ketones. Int left chemphysastron 7:53-61. 2014.
 
[10]  Nasrin D., Ashraful Alam M., Hossain M.N. & Nazimuddin M., Systhesis, characterisation and antimicrobial activities of Schiff base metal complexes derived from S-benzyldithiocarbazate with 2- hydroxyacetopheone. Chemistry Journal 3:13-19. 2013.
 
[11]  Pahontu E., Julea F., Rosu T., Purcarea V., Antibacterial, antifungal and in vitro anti leukaemia activity of metal complexes with thiosemicarbazones. J. Cel.l Mol. Med.19: 265-878. 2015.
 
[12]  Pandeya S.N., Sriram D., Nath G. & De Clercq E., Synthesis antibacterial antifungal and anti-HIV activities of Schiff and Mannich bases, derived from is a tin derivatives and N-[4-4’-chlorophenyl) thiazol-2-yl] thiosemicarbazide. Eur. J Pharm. Sci. 9: 25-31. 1999.
 
[13]  Parekh A.K. & Desai K.K., Synthesis and antibacterial activity of thiosemicarbazones: Indian J. Chem. 45. 1072. 2006.
 
[14]  Gajda, T., & Jancsó, A., Organotins formation, use, speciation, and toxicology. Organometallics in Environment and Toxicology, 7, 111-151. 2010.
 
[15]  Farhana Afsan, Sadia Afrin Dalia, Saddam Hossain, Shaheen Sarker, Synthesis , spectral and thermal characterization of selected metal complexes containing Schiff base ligands with antimicrobial activities. Asian journal of chemical sciences, 4(3). 1-19. 2018.
 
[16]  Anil Varshney and J.P Tandon, Synthesis and spectral studies of tin (IV) complexes with Schiff bases derived from sulpha drugs.141-146. 1986.
 
[17]  Singh, M. S., B. K. Singh, & K. Tawade. Synthesis and characterization of some new tin (IV) derivatives of NO and N2 O2 chelating Schiff bases. Vol.40A: 1295-1301. 2001.
 
[18]  H.L. Singh, J.B. Singh, S. Bhanuka, Synthesis, spectral, DFT and antimicrobial studies of tin(II) and lead(II) complexes with semicarbazone and thiosemicarbazonederived from (2-hydroxy-phenyl) (pyrrolidine-1-yl)methanone. J. Coord. Chem., 69: 343-353. 2016.
 
[19]  Neelofar, Nauman Ali, Shabir Ahmad, Naser M AbdEl -Salam, RiazUllah, Robila Nawaz and Sohail Ahmad, Synthesis and evolution of antioxidant and antimicrobial activities of Schiff base tin (II) complexes. Tropical Journal of Pharmaceutical Research 15 (12): 2693-2700. 2016.
 
[20]  Bader, A. T., Al-Abdaly, B. I., & Jassim, I. K., Synthesis and characterization new metal complexes of heterocyclic units and study antibacterial and antifungal. Journal of Pharmaceutical Sciences and Research, 11(5), 2062-2073. 2019.
 
[21]  Chaudhary, A., Swaroop, R., & Singh, R., Tetraazamacrocyclic complexes of tin (II): synthesis spectroscopy and biological screening. Boletin de la Sociedad chilena de Quimica, 47(3), 203-211. 2002.
 
[22]  Har Lal Singh, Synthesis, spectroscopic, and theoretical studies of tin(II) complexes with biologically active Schiff bases derived from amino acids. Main Group Metal Chemistry, 39(3-4): 67-76. (2016).
 
[23]  Liu, Y.T., Lian, G.D., Yin, D.W., Su, B.J., Synthesis, characterization and biological activity of ferrocene- based Schiff base ligands and their metal (II)complexes. Spectrochim. ActaPart A.100: 131-137. 2013.
 
[24]  Zuo, J., Bi, C., Fan, Y., Buac, D., Nardon, C., Daniel, K.G., Dou, Q.P., Cellular and computational seatudies of proteasomeinhibition and apoptosis induction in human cancer cells by amino acid Schiff base-cooper) complexes. J. Inorg. Biochem. 118: 83-93. 2013.
 
[25]  Nath, M., Goyal, S., Spectral studies and bactericidal, fungicidal, insecticidal, and parasitological activities of organotin (IV) complexes of thio Schiff bases having NO donor atoms. Metal-Based Drugs.2:297-309.1995.
 
[26]  Wang, R.M., Hao, C.J., Wang, Y.P., Li, S.B., Amino acid Schiff base complex catalyst for effective oxidation olefins with molecular oxygen.J.Mol.Catal.A:Chem.147: 173-178.1999.
 
[27]  Dehghan, G., & Khoshkam, Z., Chelation of toxic Tin (II) byquercetin: a spectroscopic study. In Int. Conf. Life Sci. Technol. (Vol. 3, pp. 3-5). 2011.
 
[28]  Mini P.S., Manickam S. T. D., Antony R., Muthupoongodiand S. S. & Magola Sathyasheeli S., Studies on Schiff base complexes derived from heterocyclic compounds. Der. Pharma. Chemica. 8(4): 67-76. 2016.
 
[29]  Rosenberg, B., Vancamp, L., Trosko, J. E., & Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. nature, 222(5191), 385-386. 1969.
 
[30]  Neha, Yadav K., Varshney S. and Varshney A. K., Synthesis, structural and antimicrobial studies of some new tin (II) complexes with semicarbazones and thiosemicarbazones, International Journal of Chemical Sciences. Vol. 4: 1236-1246. 2015.
 
[31]  A. Varshney, J.P. Tandon., Synthesisand characteristic studies of tin(II) and tin(IV) complexes of macrocyclic Schiff bases. Polyhedron. 5(11): 1853-1855.1986.
 
[32]  Zhen-Feng Chen, Yan Peng, Yun-Qiong Gu, Yan-Cheng Liu, Mei Liu, Ke-Bin Huang, 62: 51-58. 2012.
 
[33]  Grześkiewicz, A. M., Owczarzak, A., Kucińska, M., Murias, M., & Kubicki, M., Structural peculiarities and anticancer activities of two organotin compounds. Journal of Coordination Chemistry, 70(10), 1776-1789. 2017.
 
[34]  Gon, M., Tanaka, K., & Chujo, Y., Vapochromic Luminescent π-Conjugated Systems with Reversible Coordination-Number Control of Hypervalent Tin(IV)-Fused Azobenzene Complexes. Chemistry - A European Journal, 27(27), 7561-7571. 2021.
 
[35]  Gupta, M. K., Singh, H. L., Varshney, S., & Varshney, A. K., Synthetic and spectroscopic of organotin (IV) complexes of biologically active Schiff bases derived from sulpha drugs. Bioinorganic Chemistry and Applications, 1(3-4), 309-320. 2003.
 
[36]  Pellerito, L., & Nagy, L., Organotin (IV) n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coordination Chemistry Reviews, 224(1-2), 111-150.2002.
 
[37]  Arjmand, F., Parveen, S., Tabassum, S., & Pettinari, C., Organo-tin antitumor compounds: Their present status in drug development and future perspectives. Inorganica Chimica Acta, 423, 26-37.
 
[38]  Sirajuddin, M., Ali, S., McKee, V., Sohail, M., & Pasha, H., Potentially bioactive organotin (IV) compounds: synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. European journal of medicinal chemistry, 84, 343-363. 2014.
 
[39]  Singh, R. V., Chaudhary, P., Chauhan, S., & Swami, M., Microwave-assisted synthesis, characterization and biological activities of organotin (IV) complexes with some thio Schiff bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(2), 260-268. 2009.
 
[40]  Menezes, D. C., Vieira, F. T., De Lima, G. M., Wardell, J. L., Cortés, M. E., Ferreira, M. P., ... & Vilas Boas, A. (2008). The in vitro antifungal activity of some dithiocarbamate organotin (IV) compounds on Candida albicans—A model for biological interaction of organotin complexes. Applied Organometallic Chemistry, 22(4), 221-226.
 
[41]  Manju, Kishore, D., & Kumar, D., Cadmium and tin complexes of Schiff-base ligands. Journal of Coordination Chemistry, 64(12), 2130-2156. 2011.
 
[42]  Hadi, A. G., Jawad, K., Ahmed, D. S., & Yousif, E., Synthesis and biological activities of organotin (IV) carboxylates: a review. Systematic Reviews in Pharmacy, 10(1), 26-31. 2019.
 
[43]  Li, M.-X., Zhang, D., Zhang, L.-Z., Niu, J.-Y., & Ji, B.-S., Diorganotin (IV) complexes with 2-benzoylpyridine and 2-acetylpyrazine N(4)-phenylthiosemicarbazones: Synthesis, crystal structures and biological activities. Journal of Organometallic Chemistry, 696(4), 852-858. 2011.
 
[44]  Z.Tariq, F.K.Butt, S.U.Rehman, B.U.Haq, F.Aleem, C.Li,First -principles study of electronic and optical properties of sulfur doped tin monoxide: Apotential applicant for optoelectronic devices. Ceramics International. 45(6): 7495-7503. 2019.
 
[45]  Hossain M.S., Islam M.A., Zakaria C.M., Haque M.M. & Mannan M.A., Synthesis, spectral and thermal characterization with antimicrobial studies in Mn (II), Fe (II), Co (II) and Sn (II) complexes of tridentate N, O cooardinating novel Schiff base ligand. J. Chem. Bio. Phy. Sci. 6:041-052.2016.
 
[46]  Hossain M.S., Zakaria C.M., Haque M.M. & Kudrat-E-Zahan M., Spectral and thermal characterization with antimicrobial activity on Cr (III) and Sn (II) complex containing N, O donor novel Schiff base ligand. Int. J. Chem. Stud. 4(6): 08-11. 2016.
 
[47]  Joshi, R., Kumari, A., Singh, K., Mishra, H., & Pokharia, S., New diorganotin(IV) complexes of Schiff base derived from 4-amino-3-hydrazino-5-mercapto-4H-1,2,4-triazole: Synthesis, structural characterization, density functional theory studies, atoms-in-molecules analysis and antifungal activity. Applied Organometallic Chemistry, 33(5), e4894. 2019.
 
[48]  Khan, A., Parveen, S., Khalid, A., & Shafi, S., Recent advancements in the anticancer potentials of phenylorganotin(IV) complexes. Inorganica Chimica Acta505, 119464. 2020.
 
[49]  Murthy N. & Dharmarajan T.S., Synthesis, characterization and biological activity of coper (II) complexes with phenylglyoxalbis-(thiosemicarbazones). Asian J. Chem. 14(3): 1325-1330. 2002.
 
[50]  Prasad S. & Agarwal R.K., Cobalt (II) complexes of various thiosemicarbazones of 4- aminoantipyrine: Syntheses, spectral thermal and antimicrobial studies. Transit Met. Chem. 32(2): 143-149. 2007.
 
[51]  Qadeer K. Panhwar and Shahabuddin Memon., Synthesis, Spectral Characterization and Antioxidant Activity of Tin (II)-Morin Complex. Pak. J. Anal. Environ. Chem., Vol.3, No.2: 159-168. 2012.
 
[52]  Refat, M. S., & Sadeek, S. A., Preparation and characterization of Tin (II) complexes with isomeric series of Schiff bases as ligands. Journal of the Korean Chemical Society, 50(2), 107-115. 2006.
 
[53]  Shakir, M., Varkey, S. P., Nasman, O. S. M., & Mohammed, A. K., Organotin Transition Metal Complexes of 18-Membered Binuclear Hexaazamacrocycles: Synthesis and Characterization. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 26(3), 509-528, (1996).