American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: https://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2020, 8(2), 26-30
DOI: 10.12691/ajps-8-2-2
Open AccessArticle

Pathogenic Fungi and Bacteria from Homogenates and Commercial Beverages of Auricularia polytricha

Chishih Chu1, , Chiawen Hsia1 and Jun-Yu Tsai1

1Department of Microbiology, Immunology, and Biopharmaceuticals, National Chiayi University, Taiwan (ROC)

Pub. Date: October 25, 2020

Cite this paper:
Chishih Chu, Chiawen Hsia and Jun-Yu Tsai. Pathogenic Fungi and Bacteria from Homogenates and Commercial Beverages of Auricularia polytricha. American Journal of Pharmacological Sciences. 2020; 8(2):26-30. doi: 10.12691/ajps-8-2-2

Abstract

Auricularia polytricha is an important edible and medicinal fungus in Taiwan. The cultivation environment and sterilization of the mushroom cultivation bag before cultivation may affect the fungal species that occur along the fruiting body for Mucor irregularis, M. fusiformis, and Trichoderma longibrachiatum and the stalk, for Hypocrea koningii, Rhodotorula mucilaginosa, and Coprinellus radians from the stalk. The bacterial species associated with A. polytricha were also identified by PCR amplification, PCR-RFLP analysis, sequencing and BLASTn analysis. Bacterial species were identified as Bacillus cereus, Pseudomonas tolaasii, Sphingomonas paucimobilis, Acinetobacter pittii, and Lysinibacillus fusiformis in the homogenates after Pasteur sterilization. During a flavor test of 11 commercial drinks, the testers reported experiencing diarrhea. Bacterial examination of the drinks found that three samples were contaminated. Five bacterial species were identified as Pantoea agglomerans, Serratia liquefaciens, and Pseudomonas psychrophila in sample 275, Cronobacter sakazakii and Pseudomonas azotoformans in sample 684 and Pseudomonas azotoformans in sample 539, and more than one bacterial species occurred in two samples. In conclusion, pathogenic fungal and bacterial species were obtained from the fruiting bodies, stalks, homogenates, and drinks of A. polytricha after Pasteur sterilization. To prevent foodborne diseases from A. polytricha, sanitation procedures should be enforced during cultivation, processing and post-harvest storage.

Keywords:
Auricularia polytricha bacterium fruiting body fungus pathogen stalk

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Yu, J., Sun, R., Zhao, Z., and Wang, Y, “Auricularia polytricha polysaccharides induce cell cycle arrest and apoptosis in human lung cancer A549 cells,” Int J Biol Macromol, 6. 67-71. Apr.2014.
 
[2]  Yu, M., Xu, X., Qing, Y., Luo, X., Yang, Z., and Zheng, L, “Isolation of an anti-tumor polysaccharide from Auricularia polytricha (jew’s ear) and its effects on macrophage activation,” Eur. Food Res. Technol. 228. 477. Oct.2009.
 
[3]  Misaki, A., Kakuta, M., Sasaki, T., Tanaka, M., and Miyaji, H, “Studies on interrelation of sturcture and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched (1→3)-β-D-glucan of Auricularia auricula-judae, and other containing (1→3) glycosidic linkages,” Carbohyd Research, 92(1). 115-129. May.1981.
 
[4]  Mizuno, T., Sakai, T., and Chihara, G, “Health foods and medicinal usages of mushrooms,” Food Rev Int, 11(1). 69-81. Nov.1995.
 
[5]  Mizuno, T., Morimoto, M., Minato, K.I., and Tsuchida, H, “Polysaccharides from Agaricus blazei stimulate lymphocytes T-cell subsets in mice,” Biosci. Biotechnol. Biochem, 62(3). 434-437. May.1998.
 
[6]  Chu, C., Hsia, C., Tsai, J-Y, “Differences in fungal species between fruit body and stalk of Auricularia polytricha (jew's ear) during the processing,” J Agr For, National Chiayi University 17(1):63-74. Apr. 2020.
 
[7]  Lu, X.L., Najafzadeh, M.J., Dolatabadi, S., Ran, Y.P., van den Ende Gerrits, Shen, Y.N., Li, C.Y., Xi, L.Y., Hao, F., Zhang, Q.Q., Li, R.Y., Hu, Z.M., Lu, G.X., Wang, J.J., Drogari-Apiranthitou, M., Klaassen, C., Meis, J.F., Hagen, F., Liu, W.D., and de Hoog, G.S, “Taxonomy and epidemiology of Mucor irregularis, agent of chronic cutaneous mucormycosis,” Persoonia, 30. 48-56. Jun.2013.
 
[8]  Shao, J., Wan, Z., Li, R., and Yu, J, “Species identification and delineation of pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry, J Clin Microbiol 56(4). e01886-17. April.2018.
 
[9]  Druzhinina, I.S., Chenthamara, K., Zhang, J., Atanasova, L., Yang, D., Miao, Y., Rahimi, M.J., Grujic, M., Cai, F., Pourmehdi, S., Salim, K.A., Pretzer, C., Kopchinskiy, A.G., Henrissat, B., Kuo, A., Hundley, H., Wang, M., Aerts, A., Salamov, A., Lipzen, A., LaButti, K., Barry, K., Grigoriev, I.V., Shen, Q., and Kubicek, C.P, “Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts,” PLoS Genetics, 14(4). e1007322. April, 2018.
 
[10]  Kubicek, C.P., Steindorff, A.S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., Cai, F., Kopchinskiy, A.G., Kubicek, E.M., Kuo, A., Baroncelli, R., Sarrocco, S., Noronha, E.F., Vannacci, G., Shen, Q., Grigoriev, I.V., and Druzhinina, I.S, “Evolution and comparative genomics of the most common Trichoderma species,” BMC Genomics, 20(1). 485. Jun.2019.
 
[11]  Sandoval-Denis, M., Sutton, D.A., Cano-Lira, J.F., Gené, J., Fothergill, A.W., Wiederhold, N.P., and Guarro, J, “Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities,” J Clin Microbiol. 52(9). 2112-2125. Sep.2014.
 
[12]  Samuels, G.J., Dodd, S.L., Lu, B.S., Petrini, O., Schroers, H.J., and Druzhinina, I.S, “The Trichoderma koningii aggregate species,” Stud Mycol. 56. 67–133. 2006.
 
[13]  Ding, L.J., Gu, B.B., Jiao,W.H., Yuan, W., Li, Y.X., Tang, W.Z., Yu, H.B., Liao, X.J., Han, B.N., Li, Z.Y., Xu, S.H., and Lin, H.W, “New furan and cyclopentenone derivatives from the sponge-associated fungus Hypocrea koningii PF04,” Drugs, 13(9). 5579-5592. Aug.2015.
 
[14]  Yockey, J., Andres, L., Carson, M., Ory, J.J., and Reese, A.J, “Cell envelope integrity and capsule characterization of Rhodotorula mucilaginosa strains from clinical and environmental sources,” mSphere. 4(3). e00166-19. Jun.2019.
 
[15]  Yang, Q., Zhang, H., Zhang, X., Zheng, X., and Qian, J, “Phytic acid enhances biocontrol activity of Rhodotorula mucilaginosa against Penicillium expansum contamination and patulin production in apples,” Front Microbiol, 6. 1296. Nov.2015.
 
[16]  Bao. H., Li. W., Yue. X., Wu. J., Qiao. Y., Peng. Q., Shi. B., Du. Y., Chen. X., Wu. R, “Rapid and simple detection of Bacillus cereus in milk by real-time competitive annealing mediated isothermal amplification,” Analyst. Aug 18.2020.
 
[17]  Lin. L., Mei. F., Liao. J., Yang. Y, Duan. F., Lin. X, “Nine-year analysis of isolated pathogens and antibiotic susceptibilities of infectious endophthalmitis from a large referral eye center in Southern China,” Infect Drug Resist. 13. 493-500. Feb 13.2020.
 
[18]  Lee. H-I., Jeong. K-S., Cha. J-S, “PCR assays for specific and sensitive detection of Pseudomonas tolaasii, the cause of brown blotch disease of mushrooms,” Lett Appl Microbiol. 35(4). 276-280. 2002.
 
[19]  Chung. I-Y., Kim. Y-K., Cho. Y-H, “Common virulence factors for Pseudomonas tolaasii pathogenesis in Agaricus and Arabidopsis,” Res Microbiol. 165(2). 102-109. Feb-Mar.2014.
 
[20]  Okorley. B.A., Sossah. F.L., Dai. D., Xu. S., Liu. Z., Song. B., Sheng. H., Fu. Y., Li. Y, “Resistance sources to brown blotch disease (Pseudomonas tolaasii) in a diverse collection of pleurotus mushroom strains,” Pathogens. 8(4). 227. Nov 9.2019.
 
[21]  Ryan. M.P., Adley. C.C, “Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism,” Review J Hosp Infect. 75(3). 153-157. Jul.2020.
 
[22]  Singkham-In. U., Chatsuwan. T, Mechanisms of carbapenem resistance in Acinetobacter pittii and Acinetobacter nosocomialis isolates from Thailand. J Med Microbiol. 67(12). 667-1672. Dec.2018.
 
[23]  Chen. F-J., Huang. W-C., Liao. Y-C., Wang. H-Y., Lai. J-F., Kuo. S-C., Lauderdale. T-L., Sytwu. H-K, “Molecular epidemiology of emerging carbapenem resistance in Acinetobacter nosocomialis and Acinetobacter pittii in Taiwan, 2010 to 2014,” Antimicrob Agents Chemother. 63(4). e02007-18. Mar 27.2019.
 
[24]  Gong. X., Tian. W., Bai. J., Qiao. K., Zhao. J., Wang. L, “Highly efficient deproteinization with an ammonifying bacteria Lysinibacillus fusiformis isolated from brewery spent diatomite,” J Biosci Bioeng. 127(3). 326-332. Mar.2019.
 
[25]  Mechri. S., Kriaa. M., Berrouina. M. B. E., Benmrad. M. O., Jaouadi. N. Z., Rekik. H., Bouacem. K., Bouanane-Darenfed. A., Chebbi. A., Sayadi. S., Chamkha. M., Bejar. S., Jaouadi. B, “Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R,” Int J Biol Macromol. 101. 383-397. Aug.2017.
 
[26]  Dutkiewicz. J., Mackiewicz. B., Lemieszek. M. K., Golec. M., Milanowski. J, “Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants,” Ann Agric Environ Med. 23(2). 197-205. Jun 2.2016.
 
[27]  Dutkiewicz. J., Mackiewicz. B., Lemieszek M. K., Golec. M., Milanowski. J, “Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects,” Ann Agric Environ Med. 23(2). 206-222. Jun 2.2016.
 
[28]  Mahlen. S.D., “Serratia infections: from military experiments to current practice,” Clin Microbiol Rev. 24(4):755-91. Oct. 2011.
 
[29]  Cheng. C., Han H., Wang. Y., He. L., Sheng. X, “Metal-immobilizing and urease-producing bacteria increase the biomass and reduce metal accumulation in potato tubers under field conditions,” Ecotoxicol Environ Saf. 203. 111017. Oct 15.2020.
 
[30]  Healy. B., Cooney. S., O'Brien. S., Iversen. C., Whyte. P, Nally. J., Callanan. J. J., Fanning. S, “Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen,” Foodborne Pathog Dis. 7(4). 339-350. Apr. 2010.
 
[31]  Feeney. A., Kropp. K. A., O'Connor. R., Sleator. R. D, “Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen,” Gut Microbes. 5(6). 711-718. 2014.
 
[32]  Liu. S, Li. H., Hassan M. M., Zhu. J., Wang. A., Quyang. Q., Zareef. M., Chen. Q, “Amplification of Raman spectra by gold nanorods combined with chemometrics for rapid classification of four Pseudomonas,” Int J Food Microbiol. 304. 58-67. Sep 2.2019.
 
[33]  Nagai. S., Takada. Y., “Analysis of amino acid residues involved in the thermal properties of isocitrate dehydrogenases from a psychrophilic bacterium, Colwellia maris, and a psychrotrophic bacterium, Pseudomonas psychrophila,” J Biosci Bioeng. 129(3). 284-290. Mar.2020.
 
[34]  Ma. Y., Rajkumar. M., Moreno. A., Zhang. C., Freitas. H, “Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress,” Chemosphere. 185. 75-85. Oct.2017.
 
[35]  Nie. Z-J., Hang. B-J., Cai. S., Xie. X-T., He. J., Li. S-P, “Degradation of cyhalofop-butyl (CyB) by Pseudomonas azotoformans strain QDZ-1 and cloning of a novel gene encoding CyB-hydrolyzing esterase,” J Agric Food Chem. 59(11). 6040-6046. Jun 8.2011.
 
[36]  Aravinthan. A., Arkatkar. A., Juwarkar. A. A., Doble. M, “Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene,” Prep Biochem Biotechnol. 46(2). 109-115. 2016.